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Introduction

This thesis could be viewed as a mergence of two lines of research. One
line is the study on the hypergeometric functions associated with a root sys-
tem. This is actually a multivariable analogue of the classical Euler-Gauss
hypergeometric functions. These functions were introduced and studied by
Heckman and Opdam in a series of papers [16, 17, 29, 30] in the eighties
and nineties of the last century. The other one is the work by Couwenberg,
Heckman and Looijenga (2005) in [6], which studies the geometric structures
on the projective arrangement complements. This work actually includes the
theory of Deligne-Mostow (1986) [11] on the Lauricella functions as a special
case, which provides ball quotient structures on Pn minus a hyperplane config-
uration of type An+1. This thesis adopts Couwenberg-Heckman-Looijenga’s
point of view to investigate the root system hypergeometric functions and
hence studies the hyperbolic structure on the corresponding toric arrange-
ment complements. This is why we think of this thesis as a mergence of the
aforementioned two lines of research.

We first construct a projective structure on a toric arrangement comple-
ment. The basic idea is that we can write a projective structure on a complex
manifold M in terms of an affine structure on M × C×. It is well-known
that an affine structure on a complex manifold is given by a torsion free and
flat connection on its (co)tangent bundle, and vice versa. So constructing a
projective structure on M is equivalent to producing a torsion free and flat
connection on M × C×. We start with an adjoint torus H := Hom(Q,C×)
given by a root lattice Q := ZR where R is a reduced irreducible root system.
Denote the Lie algebra of H by h and the Weyl group of R by W . We are also
given a toric arrangement associated with a root system R, that is, a finite
collection of hypertori each of which is defined by Hα := {h ∈ H | eα(h) = 1}
where eα is a character of H. We write H◦ for the complement of the union
of these hypertori. Let κ be a W -invariant multiplicity parameter for R de-
fined by κ := (kα)α∈R ∈ CR. Inspired by the special hypergeometric system
constructed by Heckman and Opdam, we consider for u, v ∈ h, such a second

ix



x Introduction

order differential operator on OH◦ :

Dκ
u,v := ∂u∂v +

1

2

∑
α>0

kαα(u)α(v)
eα + 1

eα − 1
∂α∨ + ∂bκ(u,v) + aκ(u, v)

where ∂u denotes the associated translation invariant vector field on H for any
u ∈ h and

aκ : h× h→ C, bκ : h× h→ h

are a W -invariant bilinear form and a W -equivariant bilinear map respectively.
We want this system to define a projective structure on H◦. That means for
each multiplicity parameter κ and each W -equivariant bilinear map bκ, there
exists a W -invariant bilinear form aκ such that the system of differential equa-
tions Dκ

u,vf = 0 for all u, v ∈ h is integrable. In order to see the integrability
of the system, we treat it from a different point of view, i.e., the one from
the work of Couwenberg-Heckman-Looijenga. Now we associate to these data
connections ∇κ = ∇0 + Ωκ and ∇̃κ = ∇̃0 + Ω̃κ on the cotangent bundles of
H◦ and H◦ × C× with Ωκ ∈ Hom(ΩH◦ ,ΩH◦ ⊗ ΩH◦) given by

Ωκ : ζ ∈ ΩH◦ 7→
1

2

∑
α>0

kα
eα + 1

eα − 1
ζ(∂α∨)dα⊗ dα+ (Bκ)∗(ζ)

and Ω̃κ ∈ Hom(ΩH◦×C× ,ΩH◦×C× ⊗ ΩH◦×C×) given by

Ω̃κ :



ζ ∈ ΩH◦ 7→
1

2

∑
α>0

kα
eα + 1

eα − 1
ζ(∂α∨)dα⊗ dα+ (Bκ)∗(ζ)

− ζ ⊗ dt

t
− dt

t
⊗ ζ,

dt

t
∈ ΩC× 7→Aκ −

dt

t
⊗ dt

t
.

Here ∇0 and ∇̃0 denote the (flat) translation invariant connections on H
and H × C× respectively, t is the coordinate for C×, and Aκ and Bκ denote
the translation invariant tensor fields on H or H × C× defined by aκ and bκ

respectively. We can show that the system defined by Dκ
u,vf = 0 for all u, v ∈ h

is integrable if and only if the connection ∇̃κ given above defines an affine
structure, i.e., the connection ∇̃κ is torsion free and flat. The torsion freeness
of ∇̃κ comes directly from the torsion freeness of ∇κ while the flatness of ∇̃κ
needs more effort. In order to check the flatness of ∇̃κ, we need to invoke a
flatness criterion set up by Looijenga [21], or by Kohno [19] at an earlier time.
This criterion requires us to compactify H◦ × C× and compute the residues
of Ω̃κ along those added mirrors and boundary divisors. Then by applying
the criterion to our situation, we can obtain the conditions for ∇̃κ being flat.
According to these conditions, we can find an appropriate bilinear form aκ

so that the connection ∇̃κ is indeed flat and hence a W -invariant projective
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structure is constructed on H◦ in terms of ∇κ. This work is presented in
Chapter 2.

We next show that the toric arrangement complement H◦ admits a hy-
perbolic structure when κ lies in some certain region so that its image under
the projective evaluation map lands in a complex ball. The basic idea is that
we first identify the monodromy representation of the system with the reflec-
tion representation and thus define a Hermitian form h on the image of the
evaluation map for each κ, then we can find its hyperbolic region by com-
puting its determinant and show that its dual Hermitian form h∗ is greater
than 0 (equivalently h < 0) so that the desired result follows. We first com-

pute the eigenvalues of the residue endomorphisms of ∇̃κ along mirrors and
boundary divisors respectively and a surprising fact is that there are at most
two eigenvalues for each residue endomorphism no matter whether along a
mirror or a boundary divisor. This actually tells us what the local behavior
of the evaluation map looks like for the affine structure around those divi-
sors. Then we construct the reflection representation of the so-called affine
Artin group Art(M) where M is the affine Coxeter matrix associated with

the affine root system R̃ of R, while the extended affine Artin group Art′(M)
(:= Art(M) o (P∨/Q∨)) can be identified with the fundamental group of the
orbifold W\H◦ by Brieskorn’s theorem, hence we can identify the reflection
representation with the monodromy representation of the system accordingly.
We further define a Hermitian form h on the corresponding target space A
from the point of view of the reflection representation so that we can obtain
the hyperbolic region of the system by investigating its determinant. For our
situation we can write out the evaluation map around those subregular points
in the form of local coordinates in terms of those local exponents. Here by
subregular points we mean those points lying in one and only one mirror or
boundary divisor. Prepared by these, finally we can prove the dual Hermitian
form h∗ is greater than zero when κ lies in the hyperbolic region so that the
Γ-covering of W\H◦ admits a complex ball structure, where Γ stands for the
projective monodromy group. This work is done in Chapter 3.

The original goal of this PhD research project is to show that W\H◦ can
be biholomorphically mapped onto a Heegner divisor complement of a ball
quotient Γ\B by a projective evaluation map if the so-called Schwarz conditions
are satisfied. But unfortunately we haven’t gone that far in this thesis, we hope
we can address this issue in a following paper. In fact, our situation for the
case of type An corresponds to the Deligne-Mostow theory which provides ball
quotient structures on Pn as well as their modular interpretations. Besides,
Looijenga also showed in his paper [24] that the orbifold SW\H◦(En) (n =
6, 7, 8) is isomorphic to the moduli space of the Del Pezzo triples (S,K, p)
of degree d := 9 − n for which SW := {±1}.W and K is an irreducible
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rational curve with a simple node at p. We denote this moduli space by
M̃(d). Forgetting about (K, p), we get a moduli space of Del Pezzo surfaces
of degree d, denoted byM(d). While Allcock, Carlson and Toledo [1], Kondo
[20], and Heckman and Looijenga [14] respectively showed that the moduli
space of Del Pezzo surfaces of degree d has a ball quotient structure under a
period map for d = 3, 2, 1, all from a viewpoint of Hodge theory. So inspired
by these cases, we wish to find, for each root system, a suitable projective
evaluation map in our situation

Pev : W\H◦ ↪→ Γ\B
so that W\H◦ is isomorphic onto a Heegner divisor complement and in par-
ticular, for type En (n = 6, 7, 8), the following diagram commutes.

M̃(d)
forget (K,p)−−−−−−−→ M(d)

'
y yPer

SW\H◦(En)
Pev−−−−→ Γ\B

So a much more ambitious goal is to give each ball quotient obtained in this
way a modular interpretation, but we have to say we barely have any clue
about this for the moment except for only limited few cases already mentioned
above.

As a byproduct of this research, we construct a Frobenius algebra structure
on H◦ ×C×. Since it is an integrable system, we would speculate there exists
a “Frobenius-type” structure on it. In fact, we can construct such a Frobenius
algebra on H◦ ×C× with the trace map given by the symmetric bilinear map
aκ. We believe we can go further in this direction, e.g., to find a potential
function for the structure, although we haven’t arrived there in this thesis due
to the limited time. This quite preliminary work is presented in Chapter 4.

For the completeness of this thesis, we review some beautiful theories
which directly motivated our current research. They are the Deligne-Mostow
theory on the Lauricella functions, Couwenberg-Heckman-Looijenga’s theory
of geometric structures on projective arrangement complements and the theory
of torus embeddings respectively. This is done in Chapter 1.



CHAPTER 1

Preliminary theories

In this chapter we review some beautiful theories which directly motivat-
ed the research presented in this thesis. In Section 1.1, we briefly review the
Deligne-Mostow theory which studies the geometry and monodromy around
the Lauricella FD functions. In Section 1.2, we give a short overview on the
Couwenberg-Heckman-Looijenga’s theory of geometric structure on projective
arrangement complements and thus extends the Deligne-Mostow theory to a
more general setting. In Section 1.3, we briefly introduce the torus embed-
dings theory since we are dealing with geometric structure on arrangement
complements for the toric situation in this thesis.

1.1. The Deligne-Mostow theory of Lauricella functions

The study on the hypergeometric functions has a long history which can
be traced back to Euler in the 18th century. Then it started to attract more
and more attention due to the impressive results obtained by Gauss on the
hypergeometric function that is now named after him. Later Riemann devel-
oped a nice way to study the monodromy associated to the Gauss function and
Schwarz specified all those parameters for its monodromy group being finite.
Klein generalized this work to determine whether the monodromy group is
discrete.

Subsequently, this classical work was generalized to hypergeometric func-
tions in several variables. Its two variables’ version was introduced by Appell
and the corresponding monodromy problem was studied by Picard. A little
later, Lauricella generalized this to the functions in arbitrarily many variables
which are called FD, FA, FB and FC . Terada made some progress on the
monodromy problem for the Lauricella functions. Then in 1986 Deligne and
Mostow published their famous paper [11] which completed the work of Picard
and Terada on the (Appell-)Lauricella functions. They gave a rigorous treat-
ment of the geometry and monodromy problem associated to these functions
and discovered ball quotient structures on Pn minus the hyperplane configura-
tion of type An+1. Meanwhile Thurston in his paper [33] used a combinatorial

1
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method and the theory of cone manifolds to study a related moduli problem
and provided another point of view.

This section is intended to give a short review on the Deligne-Mostow
theory of Lauricella FD functions. Besides the original paper, good expositions
can be found in [23] and in Chapter 2 of Couwenberg’s PhD thesis [5]. We
shall use [23] as main source in this section, but for the sake of brevity, we
leave out most of the proofs.

Let be given real numbers µ0, · · · , µn in the interval (0, 1), where n ∈ Z+.
This (n+1)-tuple µ := (µ0, · · · , µn) is referred to as a weight system and we call
its sum |µ| :=

∑n
i=0 µi the total weight of µ. Then the Lauricella differential

of weight µ is given by

ψz := (z0 − ξ)−µ0 · · · (zn − ξ)−µndξ
where z = (z0, · · · , zn) ∈ (Cn+1)◦. Here we denote by (Cn+1)◦ the set
of z = (z0, · · · , zn) ∈ Cn+1 whose components are pairwise distinct. This
could also be regarded as the configuration space of n + 1 distinct ordered
points in C. Although this is a multivalued differential, it has a natural
branch on a left half plane by taking there the value of (−ξ)−|µ| whose ar-
gument lies in (−π/|µ|, π/|µ|). Near zk, we notice that ψz is of the form
(ξ − zk)

−µk exp(holom)dξ and it is the differential of a function of the for-
m const + (ξ − zk)

1−µk exp(holom). Since 1 − µk > 0, that function takes
a well-defined value in zk. This implies that ψz can be integrated along
every relative arc of (C, {z0, · · · , zn}); here we call an oriented piecewise d-
ifferentiable arc in C whose end points lie in {z0, · · · , zn} a relative arc of
(C, {z0, · · · , zn}).

It is natural to study the behavior of this differential at infinity by taking
the substitution ξ = ω−1 and seeing what happens at ω = 0, then we have

ψz = −(ωz0 − 1)−µ0 · · · (ωzn − 1)−µnω−(2−|µ|)dω,

which suggests to put zn+1 :=∞ and µn+1 := 2− |µ|. It is also integrable at
zn+1 in case µn+1 < 1.

Let be given a relative arc γz◦ of (C, {z◦0 , · · · , z◦n}) and a branch of ψz◦ on
γz◦ so that

∫
γz◦

ψz◦ is defined. Choose open disks Dk about z◦k in C such that

these D0, · · · , Dn do not intersect each other. Then we call such a function

f : D0 × · · · ×Dn → C

z 7→
∫
γz

ψz

a Lauricella function of weight µ. The function is well-defined since we can
find for every z ∈ D0 × · · · ×Dn, a relative arc γz of (C, {z0, · · · , zn}) and a
branch of ψz on γz such that both depend continuously on z and yield the
prescribed value when z = z◦. This function is also holomorphic since any
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primitive of ψ near (z◦, z◦k) is of the form g(z) + (ξ− zk)1−µkh(ξ, z) with g and
h being holomorphic as previously described.

We note that the Lauricella functions define a local system of C-vector
spaces: its stalk Lz at z is the space of germs of holomorphic functions at
z ∈ (Cn+1)◦ that are in fact germs of Lauricella functions and we can naturally
identify Lz with Lz◦ (by the analytic continuation) for any z ∈ D0× · · ·×Dn.

With little effort, we obtain the elementary properties of Lauricella func-
tions.

Proposition 1.1. Any f ∈ Lz
(i) is translation invariant: f(z0 + a, · · · , zn + a) = f(z0, · · · , zn) for small

a ∈ C,
(ii) is homogeneous of degree 1−|µ|: f(etz0, · · · , etzn) = e(1−|µ|)tf(z0, · · · , zn)

for small t ∈ C and
(iii) obeys the system of differential equations

∂2f

∂zk∂zl
=

1

zk − zl
(µl

∂f

∂zk
− µk

∂f

∂zl
), 0 ≤ k < l ≤ n. (1.1)

The translation invariance of the Lauricella functions implies that they
are in fact locally defined on V ◦n := (Cn+1)◦/main diagonal. The homogeneity
implies that when |µ| = 1, these functions are constant on the C×-orbits and
hence define a local system on P(V ◦n ); we call this the parabolic case. Satisfying
such a system of differential equations shows that the map assigning to f ∈ Lz
its 1-jet at z is injective, which can be seen by letting fk := ∂f

∂zk
and rewriting

the above equations (1.1) to the system of ODE’s

∂fk
∂zl

=
1

zk − zl
(µlfk − µkfl), k 6= l.

Then we can define an L-slit to be an oriented piecewise differentiable arc in
P1 by adding to a relative arc of (C, {z0, · · · , zn}) a line from zn to zn+1 :=∞
which is eventually parallel to the real axis in the positive direction. We
denote by δ such an L-slit or equivalently the system of arcs (δ1, · · · , δn+1) if
we denote the piece connecting zk−1 with zk by δk. As a counterpart to δk,
we denote by δ−k the arc connecting zk−1 with zk that is ‘infinitesimally’ close

to δk approached from the right side. Then the value of ψz on δ−k is given as
taking its limit from the right. We have such a relation between the value of
ψz on δk and δ−k :

ψz|δ−k = exp(−2π
√
−1(µ0 + · · ·+ µk−1)).ψz|δk.

We have the following important theorem.
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Theorem 1.2. The functions
∫
δ1
ψ, · · · ,

∫
δn
ψ form a basis for Lz. Moreover,

Lz contains the constant functions if and only if we are in the parabolic case:
|µ| = 1.

The idea of the proof is to choose a closed piecewise differentiable path γ
in C that is the boundary of an embedded disk D ⊂ C whose interior contains
no zk’s, and to choose a branch of ψz over D so that we have

∫
γ ψz = 0. Then∫

γ ψz is a sum of Lauricella functions associated to simple relative arcs. When

|µ| = 1, ψz is equal to ω−1dω near ∞. So then for a loop γ which encircles
z0, · · · , zn in the clockwise direction, we have

∫
γ ψz =

∫
ω(γ) ω

−1dω = 2π
√
−1

which shows that Lz contains the constant functions.
Since the basis of Lauricella functions will be used as a ‘coordinate’-type

map from V ◦n to Cn while the basis we just defined in Theorem 1.2 is not that
ideal, we need to modify this basis by a scalar factor as follows

Fk(z, δ) :=

∫
δk

(ξ − z0)−µ0 · · · (ξ − zk−1)−µk−1(zk − ξ)−µk · · · (zn − ξ)−µndξ

= w̄k

∫
δk

ψz

where wk := exp(
√
−1π(µ0 + · · · + µk−1)). We call the multivalued map

F := (F1, · · · , Fn) from V ◦n to Cn the Lauricella map and its projectivization
PF from P(V ◦n ) to Pn−1 the Schwarz map for the weight system µ.

We notice that∫
δk

ψz = wkFk(z, δ) and

∫
δ−k

ψz = w̄kFk(z, δ)

since ψz|δ−k = w̄2
kψz|δk. So if |µ| = 1, then we have

n∑
k=1

(wk − w̄k)Fk(z, δ) =

n∑
k=1

(

∫
δk

ψz −
∫
δ−k

ψz) =

∫
γ
ψz = 2π

√
−1,

where γ is a clockwise loop enclosing {z0, · · · , zn}, or equivalently,

n∑
k=1

Im(wk)Fk(z, δ) = π.

Corollary 1.3. If we are not in the parabolic case, then the Lauricella map
F is a local isomorphism taking values in Cn − {0}. In the parabolic case,
the Lauricella map F factors through a local isomorphism from P(V ◦n ) to the
affine hyperplane An−1 in Cn defined by

∑n
k=1 Im(wk)Fk = π.
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In order to eliminate the multivaluedness of the Lauricella map F , we
lift F to some covering space of V ◦n . So it’s natural to examine the funda-
mental group of the space in question. We take z◦ = (z◦0 , · · · , z◦n) as a base
point for (Cn+1)◦ and use the same symbol for its image in V ◦n . The projec-
tion (Cn+1)◦ → V ◦n naturally induces an isomorphism on fundamental groups:
π1((Cn+1)◦, z◦) ∼= π1(V ◦n , z

◦). This group actually can be identified with the
pure braid group with n+1 generators by the Brieskorn’s theorem [3] which is
denoted by PBrn+1.

In fact, we can find an intermediate covering space of V ◦n on which the
Lauricella map becomes a single-valued map. Suppose γ : [0, 1] → (Cn+1)◦

is a path from z = γ(0) to z′ = γ(1), then analytic continuation along this
path gives rise to an isomorphism of vector space Aµ(γ) : Lz → Lz′ . This is
compatible with the composition of paths: if τ : [0, 1] → (Cn+1)◦ is a path
from z′ = τ(0) to z′′ = τ(1), then Aµ(τ ◦ γ) = Aµ(τ)Aµ(γ) : Lz → Lz′′ .
Hence if γ is a loop in (Cn+1)◦ based at z◦, then the map γ 7→ Aµ(γ) yields a
representation

ρ : PBrn+1
∼= π1((Cn+1)◦, z◦)→ GL(Lz◦)

which is called the monodromy representation of the Lauricella system with
weight system µ. The image of this representation is thus called the mon-
odromy group, which is denoted by Γµ, or simply Γ.

This monodromy representation gives rise to an intermediate Γ-covering

V̂ ◦n of V ◦n on which all the Fk’s become single-valued, usually denoted by F̂k.

In fact, V̂ ◦n is equal to ker(ρ)\Ṽ ◦n with Ṽ ◦n being the universal covering of V ◦n
and we have Γ ∼= π1(V ◦n )/ ker(ρ). A point of V̂ ◦n can be represented as a pair
(z, δ), where δ is an L-slit for z, with the understanding that (z′, δ′) represents

the same point if and only if z − z′ lies on the main diagonal and F̂k(z, δ) =

F̂k(z
′, δ′) for all k = 1, · · · , n. From this description we see right away that the

basic Lauricella functions F̂ on V̂ ◦n define a single-valued holomorphic map

F̂ = (F̂1, · · · , F̂n) : V̂ ◦n → Cn − {0}.

The action of Γ on V̂ ◦n is then given as follows: if g ∈ Γ is represented by
the loop γg in Cn+1 at z, then g.[(z, δ)] = [(z, δ(γ−1

g ))], where δ(γ−1
g ) means

the L-slit for z after an inverse loop transformation of γg. We then have the
following commutative diagram

V̂ ◦n
F̂−−−−→ Cn − {0}y y

V ◦n
F−−−−→ Γ\(Cn − {0})
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with the left vertical arrow an unramified Γ-covering map. We see that F
becomes a Γ-equivariant map.

In fact, there exists a Hermitian form h associated with the weight system µ
which induces the corresponding geometric structure on Cn or on a hyperplane
An−1, depending on whether |µ| is integral. We next show how to construct

such a Hermitian form h. First let h̃ be the Hermitian form on Cn+1 defined
by

h̃(F,G) =
∑

1≤j<k≤n+1

Im(wjw̄k)FkḠj .

The h̃-orthogonal complement in Cn+1 of the last basis vector en+1 is the
hyperplane An ⊂ Cn+1 defined by

∑n+1
k=1 Im(wk)Fk = 0. Then we have the

composite map
pr : An ↪→ Cn+1 = Cn × C→ Cn

where the second map is a projection.
When |µ| /∈ Z, we have Im(wn+1) 6= 0 and pr thus is an isomorphism.

We let h be the restriction of h̃ to An and then transferred to Cn via this
isomorphism. If |µ| ∈ Z, then Im(wn+1) = 0 and hence ker(pr) = Cen+1 and

Im(pr) = An−1 ⊂ Cn. Since en+1 is h̃-isotropic, we thus obtain an induced
Hermitian form on An−1. Therefore, we construct a Γ-invariant Hermitian
form h on the corresponding space. When 0 < |µ| ≤ 1, the form h is positive
definite. While when 1 < |µ| < 2, the form h is of hyperbolic signature and
we have h(F (z, δ), F (z, δ)) = N(z), where

N(z) = −
√
−1

2

∫
C
ψz ∧ ψ̄z = −

∫
C
|z0 − ξ|−2µ0 · · · |zn − ξ|−2µnd(area).

This Hermitian form induces a geometric structure on the corresponding
space according to the associated weight system µ. Let’s have a look how
the geometric structure induced by a Hermitian form. Suppose W is a fi-
nite dimensional complex vector space, then the tangent space TpP(W ) of its
projective space P(W ) at p can be identified with Hom(Lp,W/Lp); here Lp
stands for a one-dimensional subspace of W which drops to p ∈ P(W ). If a
Hermitian form h is given on W which is nonzero on Lp, then it determines a

Hermitian form hp on P(W ). We first identify W/Lp with L⊥p with respect to

h and think of a tangent vector as a linear map ϕ : Lp → L⊥p
∼= W/Lp. Once

we choose a generator w ∈ Lp, define hp(ϕ,ϕ
′) := |h(w,w)|−1h(ϕ(w), ϕ′(w)).

This is clearly independent of the generator w, so hp is a Hermitian form on
P(W ) we desire.

If h is positive definite, then so is hp for every p ∈ P(W ). By this P(W )
acquires a so-called Fubini-Study metric. When h is of hyperbolic signature,
we have the set of p ∈ P(W ) for which h is negative on Lp, then hp is positive
definite on this set as well. We denote this set by B(W ) because we can write
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the Hermitian form h on W in the form h(w,w) = −|w0|2 + |w1|2 + · · ·+ |wn|2,
and then B(W ) is defined as: h(w,w) = −|w0|2 + |w1|2 + · · · + |wn|2 < 0, or
equivalently, |w1/w0|2 + · · ·+ |wn/w0|2 < 1. This is simply the open unit ball
in complex m-space. Thus we call B(W ) a complex-hyperbolic space and the
corresponding metric complex-hyperbolic metric.

We conclude the above discussion as the following theorem.

Theorem 1.4. The weight system µ endows P(V ◦n ) with a natural Kähler
metric which is Γ-invariant, and locally isometric to a Fubini-Study metric,
a flat metric and a complex-hyperbolic metric when |µ| < 1, |µ| = 1 and
|µ| > 1 respectively. We call these 3 cases elliptic, parabolic and hyperbolic
respectively.

Then it is natural to raise such a question: what will happen when points
coalesce (i.e., some zk’s of z come together)? Or let’s phrase it in a different
way: whether those geometric structures can be extended across the comple-
mentary set of V ◦n in Vn? In order to deal with this issue, we need to invoke the
finiteness condition of the monodromy group which is essentially controlled by

the weight system µ. In fact, the Γ-covering V̂ ◦n → V ◦n can be extended as

a ramified Γ-covering over a bigger open subset V f
n of Vn when the finiteness

condition of the monodromy group are endowed; here V f
n stands for the subset

of Vn over which the covering map has a finite ramification. The standard tool
used here is often referred to as normalization.

Let Q◦µ denote the SL2(C)-orbit space of the subset of (P1)n+2 parameter-

izing pairwise distinct (n + 2)-tuples in P1. The point z = (z0, · · · , zn+1) is

called µ-stable if the R-divisor Div(z) :=
∑n+1

k=0 µk(zk) has no point of weight
≥ 1. We also use Sµ to denote the group of permutations of {0, · · · , n + 1}
preserving the weights, then we should view the Lauricella map F as being
multivalued on Sµ\V ◦n , rather than on V ◦n . After a very careful analysis around
those strata of Vn − V ◦n which parameterize some components of z being the
same, we arrive at the main result of this theory, due to Deligne-Mostow [11]
and Mostow [27].

Theorem 1.5 (Deligne-Mostow). Suppose that µ satisfies the half integrality
condition, i.e., whenever for 0 ≤ k < l ≤ n + 1 we have µk + µl < 1, then
1 − µk − µl is the reciprocal of an integer or the reciprocal of half an integer
in case µk = µl.

ell: If |µ| < 1, then Γ is a finite complex reflection group in GL(n,C) and

the Lauricella map F̂ : Ŝµ\Vn → Cn−{0} is a Γ-equivariant isomorphism
and thus descends to an isomorphism F : Sµ\Vn → Γ\(Cn − {0}).
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par: If |µ| = 1, then Γ acts as a complex Bieberbach group in An−1 and the

Schwarz map P̂F : P(Ŝµ\Vn)→ An−1 is a Γ-equivariant isomorphism and
thus descends to an isomorphism PF : P(Sµ\Vn)→ Γ\An−1.

hyp: If 1 < |µ| < 2, then the Γ-covering Ŝµ\Q◦µ → Sµ\Q◦µ extends to a

ramified covering Ŝµ\Qst
µ → Sµ\Qst

µ and P̂F extends to a Γ-equivariant

isomorphism Ŝµ\Qst
µ → Bn−1. Moreover Γ acts discretely in this complex

ball and with finite covolume.

The reader can consult [23] for a detailed discussion on this result.
Deligne and Mostow also gave a modular interpretation of their ball quo-

tients. Of course we are doing this discussion under the hyperbolic case
with discrete monodromy: µk ∈ (0, 1) and rational for k = 0, · · · , n + 1
such that 1 < |µ| < 2. From this point of view, the Schwarz map can
be interpreted as a period map. The idea is to lift P1 to a cyclic cover on
which the Lauricella integrand becomes a regular differential. In order to
see this, we first write µk = mk/m as quotient of positive integers such that
gcd(m,m0, · · · ,mn+1) = 1 and let dk be the denominator of the reduced frac-
tion µk. Consider the curve given by

ζm =

n∏
k=0

(zk − ξ)mk

in affine coordinates. This is a cyclic cover C → P1 of order m ramified over
zk of order dk, with a regular holomorphic differential ψ = dξ/ζ on it. The
periods ∫ zk+1

zk

ψ

are also a basis of Lauricella functions. Therefore, the Schwarz map P̂F :

Q̂stµ → Bn−1 can now be understood as a period map associated to the curve
C. The similar example in the toric case will be investigated in more detail in
Section 3.6.

1.2. Geometric structures on projective arrangement comple-
ments

Inspired by the idea that viewing the configuration space of n+ 1 pairwise
distinct points in C as a complement of a (linear) hyperplane arrangement in
Cn+1 and the observation that hypergeometric functions actually give rise to
a local system on (Cn+1)◦, Couwenberg, Heckman and Looijenga [6] extended
the Deligne-Mostow theory to a more general setting, which is of a stronger
geometric nature.
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Let us start with a finite dimensional complex vector space V endowed
with an inner product, a finite collection H of linear hyperplanes in V . Such
(V,H) is called a linear hyperplane arrangement. We define the arrangement
complement by V ◦ := V − ∪H∈HH, i.e., the complement of the union of
the members of H in V . We shall always use the superscript ◦ to denote
the complement of an arrangement in an analogous situation as long as the
arrangement is understood.

We denote by L(H) the collection of hyperplane intersections taken from
subsets ofH; here we understand V is also included in L(H) as the intersection
over the empty subset ofH. And for L ∈ L(H), we denote byHL the collection
of H ∈ H which contains L. On the other hand, each H ∈ H−HL meets L in
a hyperplane of L. We denote the collection of these hyperplanes of L by HL.
But we notice that the natural map H − HL → HL needs not be injective,
so that H − HL and HL cannot be identified in general. We say that H is
irreducible if there does not exist a nontrivial decomposition of H such that
H = HL t HL′ with L,L′ ∈ L(H) and L ⊕ L′ = V . A member L ∈ L(H) is
also called irreducible if HL is. We denote the subset of irreducible members
of L(H) by Lirr(H). For more about hyperplane arrangement, the interested
reader could consult Orlik and Terao [31].

Suppose we are given a map κ which assigns to every H ∈ H a positive
real number kH , then we can define a connection ∇κ on the tangent bundle
of V ◦. For H ∈ H, let πH ∈ End(V ) denote the orthogonal projection onto
H⊥, then ρH := kHπH is self-adjoint with respect to the inner product. So
its kernel is H with trace kH . We also let ωH denote the unique meromorphic
differential on V with divisor −H and residue 1 along H. So ωH := φ−1

H dφH ,
where φH is a defining linear equation for H. Put the connection form

Ωκ :=
∑
H∈H

ωH ⊗ ρH

and view it as an End(V )-valued holomorphic differential on V ◦. Then the
desired connection is defined as follows

∇κ := ∇0 − Ωκ

where ∇0 denotes the standard (translation invariant) connection on V re-
stricted on V ◦.

Now our ∇κ is easily verified to be torsion free and there are some criteria
for the flatness of this connection.

Theorem 1.6. ∇κ is C×-invariant and torsion free. Moreover, the following
properties are equivalent:

(i) ∇κ is flat,
(ii) Ωκ ∧ Ωκ = 0,
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(iii) for every pair L,M ∈ L(H) with L ⊂M , the endomorphisms
∑

H∈HL ρH
and

∑
H∈HM ρH commute,

(iv) for every L ∈ L(H) of codimension 2, the sum
∑

H∈HL ρH commutes
with each of its terms.

Proof. See [21] and [6]. A less general form of the flatness criterion
also appeared in a paper by Kohno [19]. We shall later also prove part of
these criteria when we need them along the way where we deal with the toric
case. �

If the connection ∇κ is flat, we say that the triple (V,H, κ) is a Dunkl
system. From [6] we can see that besides in the Lauricella case there also exist
many other Dunkl systems of interest, such as in the complex reflection case.

It is well-known that a flat torsion free connection on a tangent bundle
defines an affine structure. We denote the holonomy group of the Dunkl

system by Γ. So both V ◦ and its Γ-covering V̂ ◦ come with one, denoted by
AffV ◦ resp. Aff

V̂ ◦
, that is a subsheaf of affine-linear functions of the structure

sheaf. The sheaf of affine-linear functions is in fact the sheaf of holomorphic
functions whose differential is flat for the connection, which corresponds to a
system of second order differential equations. Conversely, an affine structure
is always given by a flat torsion free connection. Then we see that the space of

affine-linear functions on V̂ ◦ is given by Aff(V̂ ◦) := H0(V̂ ◦,Aff
V̂ ◦

). We also

denote by A the set of linear forms Aff(V̂ ◦) → C which are the identity on

C. In fact, this is an affine hyperplane in Aff(V̂ ◦)∗. Then the evaluation map

ev : V̂ ◦ → A which assigns to ẑ the linear form evẑ : f̂ ∈ Aff(V̂ ◦) 7→ f̂(ẑ) ∈ C
is called the developing map of the affine structure.

Then for each given κ, we can deform the connection and the Hermitian
form at the same time so that we can induce different geometric structures
on P(V ◦). First we can deform the standard connection ∇0 in a real analytic
way to a one-parameter family of flat torsion free connections, denoted by
∇s, s ≥ 0. On the other hand, the inner product gives rise to a translation
invariant metric on V . Its restriction h0 to V ◦ is flat for ∇0. Then we can also
deform h0 to a family of Hermitian forms such that each hs is flat for ∇s. Since
the scalar multiplication in V acts locally like homothety, we have that P(V ◦)
inherits a Hermitian metric gs from V ◦. We only allow s vary in an interval for
which gs stays positive definite. Meanwhile this still makes it possible for hs to
become degenerate or of hyperbolic signature as long as for every p ∈ V ◦, the
restriction of hs to a hyperplane which is supplementary and perpendicular to
Tp(Cp) is positive definite. Then the geometric structures could be classified
into following 3 cases: if hs is positive on Tp(Cp), then we are given a Fubini-
Study metric gs on P(V ◦), we refer to this situation as the elliptic case; if
Tp(Cp) is the kernel of hs, then gs is a flat metric, we refer to this situation
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as the parabolic case; if hs is negative on Tp(Cp), then gs is locally the metric
of a complex ball, we refer to this situation as the hyperbolic case.

We conclude this discussion as the following theorem.

Theorem 1.7. Suppose we are given a κ such that ∇κ is flat and a corre-
sponding flat Hermitian form hκ is of parabolic type. For every s ≥ 0, we are
given a nonzero Hermitian form hs on V ◦ which is flat for ∇sκ. Assume it
is real-analytic in s and is equal to the given positive definite form for s = 0.
Then we have:

(i) for s < 1, hs > 0,
(ii) h1 ≥ 0,

(iii) there exists a mhyp ∈ (1,∞] such that for s ∈ (1,mhyp), hs is of hyperbolic
type.

We call mhyp the hyperbolic exponent of the family.

See [6] for a detailed discussion about this result. Then a given pair
(∇sκ, hs) endows V ◦ with a geometric structure. If we want to extend this
structure across the arrangement, we have to do a very careful analysis n-
ear those components of the arrangement. Fortunately, we do have some
nice hereditary properties of the Dunkl connection. For L ∈ L(H) irre-
ducible, since

∑
H∈HL kHπH commutes with each of its terms, by Schur’s

lemma, we must have that
∑

H∈HL kHπH = kLπL for some kL, where πL is
the orthogonal projection with kernel L. So by a trace computation, we have
kL = codim(L)−1

∑
H∈HL kH . Hence for the origin, which is viewed as an

intersection of all the hyperplanes (suppose we have enough hyperplanes in
general positions), we have k0 = dim(V )−1

∑
H∈H kH . In fact, these numbers

kL have an inclusion-reverse property, i.e., kM < kL if L ( M . If we denote
by D the exceptional divisor of the blow-up of L in V, then the affine struc-
ture on V ◦ is of infinitesimally simple type along D◦ (c.f. Definition 3.4) with
logarithmic exponent kL − 1.

Then for every L ∈ L(H), put

ΩL :=
∑
H∈HL

ωH ⊗ ρH .

This defines a Dunkl connection ∇L on (V/L)◦.
Let iL denote the inclusion: L ⊂ V . If I is given by L ∩ H for some

H ∈ H −HL, then ωLI := i∗L(ωH) is the logarithmic differential on L defined
by I. Also notice that for each I ∈ HL, there exists a unique irreducible
intersection I(L) ∈ L(H) such that L ∩ I(L) = I. Then we can also define a
Dunkl connection ∇L on L◦ as follows

ΩL :=
∑
I∈HL

ωLI ⊗ kI(L)π
L
I
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where πLI denotes the restriction of πI to L.
We thus call the Dunkl connection ∇L resp. ∇L defined on (V/L)◦ resp.

L◦ the L-transversal resp. L-longitudinal Dunkl connection.
Now in order to extend the geometric structure across the arrangement

“nicely”, we have to impose the so-called Schwarz condition on the Dunkl
system. But before we proceed to that, let us have a look at a simple example
first so that we can have some feeling why the Schwarz condition are introduced
in the way as later. It is a one-dimensional example. Let V be C, H consists
of the origin and Ω = k dzz . Assume we have finite holonomy, which means
we can write 1− k = p/q with p, q relatively prime integers and q > 0. Then
the holonomy cover can be extended to a q-fold cover with ramification over
the origin V̂ → V defined by ẑq = z. On the other hand, the developing map
V̂ − {0} → C is given by w = ẑp and hence extends across the origin only if
p > 0, i.e., k < 1. But we could note that the connection is invariant under
the pth roots of unity ξp which means the ξp-orbit space of V is covered by

the ξp-orbit space of V̂ and the developing map factors through the latter as
an isomorphism onto C.

This example suggests the definition for Schwarz condition. Assume 1 −
kL 6= 0 can be written as a fraction pL/qL with pL, qL relatively prime integers
and qL > 0. We callGL the Schwarz rotation group of L, which is the subgroup
of the unitary group U(V ) consisting of elements fixing L pointwise and acting
as scalar multiplication in L⊥ by a |pL|th root of unity. Then we say that
L ∈ Lirr(H) satisfies the Schwarz condition if the Dunkl system is invariant
under GL. We say that the Dunkl system satisfies the Schwarz condition
if every L ∈ Lirr(H) satisfies the Schwarz condition. We denote by G the
Schwarz symmetry group which is the subgroup of U(V ) generated by the
Schwarz rotation groupGL of the L ∈ Lirr(H) satisfying the Schwarz condition.

Suppose now the Dunkl system satisfies the Schwarz condition. As illus-
trated by the previous one-dimensional example, for L ∈ Lirr(H), it’s easy to
extend the developing map across L◦ when 1− kL > 0. But when 1− kL ≤ 0,
the situation becomes quite different because if we approach L◦ from V ◦ along

a curve, the image of a lift in V̂ ◦ under the developing map tends to infinity
with limit a point of P(A). In fact, these limit points lie in a well-defined
Γ-orbit of linear subspaces of P(A) of codimension dim(L), which is called
a special subspace in P(A). So we say that V ◦ has geometric structures of
elliptic, parabolic, hyperbolic type according to whether k0 < 1, = 1 or > 1.
That is because k0 < 1 (resp. k0 = 1) ensures kL < 1 for all L ∈ Lirr(H) (resp.
L ∈ Lirr(H)− {0}) due to the monotonicity of kL’s.

While the most interesting case is the one of hyperbolic type, we need to
treat L◦ with kL ≥ 1 very carefully. Now we assume the Dunkl system with the
flat Hermitian form h is of the hyperbolic type. We notice that the restriction
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of h to the fibers of the natural retraction r : VL◦ → L◦ is positive, semipositive
and hyperbolic according to whether 1−kL > 0, = 0 or < 0. From this we see
that when kL < 1 L◦ still keeps its hyperbolic type while other cases not. So
for each L ∈ Lirr(H) with kL ≥ 1 we need to blow it up and contract it in its
own direction so that each of them has a hyperbolic structure in the end. Of
course, we need to blow up those L’s in an appropriate order. And we should
point out that for those L’s with kL = 1, we need to blow up each of them in
a real-oriented manner. The process of blowing up and followed by blowing
down is a very technical tool, interested reader could consult [22] and [6] for
a detailed and complete discussion. After we finish these operations, we can
extend the corresponding structure across the arrangement. We conclude the
above discussion by the following theorem.

Theorem 1.8 (Couwenberg-Heckman-Looijenga). Suppose the Dunkl system
satisfies the Schwarz condition and there is a flat Hermitian form h on the
tangent bundle of V ◦.

ell: if 0 < k0 < 1, then h is positive definite. The developing map êvG :
G\V̂ → A is a Γ-equivariant isomorphism and thus descends to an iso-
morphism of orbit space of reflection groups evG : G\V → Γ\A. Moreover,
P(G\V ) acquires a new structure as a complete elliptic orbifold via evG.

par: if k0 = 1, then h is positive semidefinite with kernel K on the trans-

lation space of A. The developing map êvG : G\ ̂V − {0} → A is a Γ-
equivariant isomorphism and thus descends to an isomorphism of orbit
space of complex crystallographic groups evG : G\V → Γ\(K\A). More-
over, P(G\V ) acquires the structure of a complete parabolic orbifold via
evG.

hyp: if 1 < k0 < mhyp for some mhyp > 1, then h is of hyperbolic type
so that h defines a complex ball B in the projective space P(A). If A�

denotes the complement of the union of the special hyperplanes in A, then

the developing map êvG : G\V̂k<1 → A� is a Γ-equivariant isomorphism
and thus descends to an isomorphism evG : G\Vk<1 → Γ\A�. Here Vk<1

denotes the union of the strata L◦ with kL < 1 which is an open subset of
V (V ◦ ⊂ Vk<1 since kV = 0). Moreover, P(G\Vk<1) acquires the structure
of a hyperbolic orbifold whose metric completion is Γ\B.

Therefore, we obtain new examples of groups operating discretely and with
finite covolume on a complex ball through the hyperbolic case.

Now let us see how this theory includes the Deligne-Mostow theory as a
special case. We start with a weight system µ which gives rises to a Lauricella
differential. Let V := Vn = Cn+1/main diagonal. Denote the standard basis of
Cn+1 by ε0, · · · , εn. Let H be the collection of diagonal hyperplanes Hij ⊂ V
defined by zi = zj and ωij := (zi − zj)−1d(zi − zj) the associated logarithmic
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form. The inner product on V comes from the inner product on Cn+1 given by
(εi, εj) = µiδij . In fact, we could identify V with the orthogonal complement
of the main diagonal which is the hyperplane defined by

∑
i µizi = 0. The

line orthogonal to the hyperplane Hij is spanned by the vector µjεi − µiεj .
Sometimes we replace the original basis by a new basis {ε′i := µ−1

i εi} for the
reason that the hyperplane Hij then is orthogonal to ε′i − ε′j ; notice that the

inner product changed (ε′i, ε
′
j) = µ−1

i δij . Now the endomorphism ρ̃ij : Cn+1 →
Cn+1; z 7→ (zi − zj)(µjεi − µiεj) is selfadjoint with kernel Hij . And we also
have ρ̃ij(µjεi − µiεj) = (µi + µj)(µjεi − µiεj) so that kHij = µi + µj . In
particular, ρ̃ij induces an endomorphism ρij in V . We can verify that the
connection defined by

∇ := ∇0 −
∑
i<j

ωij ⊗ ρij

is flat so that it becomes a Dunkl system. In fact, the space of affine-linear
functions at z ∈ V ◦ is precisely the space of solutions of the system of differ-
ential equations we have seen in part (iii) of Proposition 1.1. Therefore, the
Schwarz map can now be understood as a projectivized developing map for the
new projective structure on P(V ◦). We can also compute that k0 = |µ|; and if
an irreducible member L ∈ Lirr(H) is given by a subset I ⊂ {0, · · · , n} with at
least two elements, i.e., L = L(I) is the locus where all zj , j ∈ I coincide, then
kL =

∑
j∈I µj . A further discussion, like how the Schwarz condition appears

in the case, can be found in Example 3.26 which deals with its toric analogue.
We shall in this thesis use the point of view introduced in this section to

reinvestigate the special hypergeometric system associated with a root system.

1.3. Torus embeddings

Since we shall treat the arrangement complement for the toric case in this
thesis, we feel it necessary to invest some pages here to give a brief introduction
to the theory of torus embeddings. In fact, the name “torus embeddings” is
somehow an outdated one, people nowadays more and more use the name
“toric varieties” instead. Simply speaking, a toric variety is a normal variety
X that contains a torus T as a dense open subset, together with an action
T×X → X of T on X that extends the natural action of T on itself. From this
viewpoint, we can see that the torus action is as important as compactifying
a torus in this theory. That is why the name “toric varieties” is more popular
today, which gives a more complete description on this theory. However,
we shall still use the name “torus embeddings” here because we emphasize
the compactification problem rather than the torus action in this thesis. An
introduction to this theory can be found in Oda [28] and Fulton [12].
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Let be given a free Z-module N of rank n, i.e., N ∼= Zn. Let M be its dual
Z-module defined by M := HomZ(N,Z). Then we have a canonical bilinear
pairing

(·, ·) : M ×N → Z.
We can extend this to the real situation by scalar extension to the real number
field R. Thus we have n-dimensional real vector spaces NR := N ⊗Z R and
MR := M ⊗Z R with a canonical R-bilinear pairing

(·, ·) : MR ×NR → R.
A subset σ of NR is called a strongly convex rational polyhedral cone (with

apex at the origin O) if it is a cone generated by a finite number of vectors in
N such that σ ∩ (−σ) = {O}. In other words, if we denote the finite number
of vectors in N by v1, · · · , vr, we can define σ as

σ = R≥0v1 + · · ·+ R≥0vr

containing no line through the origin.
The dual cone in MR of σ is the set of vectors of MR that are ≥ 0 on σ

σ∨ := {u ∈MR | (u, v) ≥ 0 for all v ∈ σ}.
So if v0 /∈ σ, then there must be some u0 ∈ σ∨ such that (u0, v0) < 0. Based on
this fundamental fact about the convex set, we have the following elementary
properties of σ. Note that a subset τ of σ is called a face and is denoted τ ≺ σ,
if

τ = σ ∩ {u0}⊥ := {v ∈ σ | (u0, v) = 0}
for a u0 ∈ σ∨. A face of codimension one is called a facet.

Lemma 1.9. (i) (σ∨)∨ = σ;
(ii) Any face is also a convex polyhedral cone;

(iii) Any intersection of faces is also a face;
(iv) Any face of a face is a face;
(v) Any proper face is contained in some facet.

In fact, this lemma holds as long as σ is a convex polyhedral cone.

Proposition 1.10 (Gordon’s Lemma). If σ is a rational convex polyhedral
cone, then Sσ = σ∨ ∩M is a finitely generated semigroup.

Any additive finitely generated semigroup S gives rise to a commutative
C-algebra C[S]. As a complex vector space it has a basis eu, as u varies over
S, with multiplication corresponding to the addition in S:

eu · eu′ = eu+u′ .

It’s clear that the unit 1 is e0 and generators {ui} for the semigroup S give rise
to generators {eui} for the C-algebra C[S]. For A = C[S], the closed points of



16 Preliminary theories

Spec(A) actually correspond to homomorphisms of semigroups S → C where
C = C× ∪ {0} is regarded as an abelian semigroup with multiplication:

Specm(C[S]) = Homsg(S,C).

Since eu is a character which gives rise to a homomorphism eu : Specm(C[S])→
C×, the value of eu at the corresponding point of Specm(C[S]) which is a ho-
momorphism x from S to C can be defined by: eu(x) = x(u).

When S = Sσ = σ∨ ∩M arises from a strongly convex rational polyhedral
cone σ, put Aσ = C[Sσ], and define

Uσ := Spec(C[Sσ]) = Spec(Aσ)

to be the corresponding affine toric variety. In fact, from the above point of
view, the set of the closed points of Uσ (denoted by Uσ also) can be described
in a slightly different way. If Sσ can be written as Sσ = Z≥0u1 + · · ·+ Z≥0ur,
let

Uσ := {x : Sσ → C | x(O) = 1, x(u+ u′) = x(u)x(u′), ∀u, u′ ∈ Sσ}

and let eu(x) := x(u) for u ∈ Sσ and x ∈ Uσ. Then the map

(eu1 , · · · , eur) : Uσ → Cr = C× · · · × C︸ ︷︷ ︸
r copies

defines a bijection from Uσ onto its image in Cr.
If we use the language of algebraic geometry, the structure of an algebraic

variety on Uσ can be described very concisely. We notice that M = S{O}.
Let C[M ] :=

⊕
u∈M Ceu be the group algebra of M over C, where eu are

defined as above. The ring multiplication is defined by eu · eu′ := eu+u′ for
u, u′ ∈M . If v1, · · · , vn is a basis of N , and u1, · · · , un is the dual basis of M ,
put Xi = eui ∈ C[M ]. Since as a semigroup M has generators ±u1, · · · ,±un,
we have

C[M ] = C[X1, X
−1
1 , · · · , Xn, X

−1
n ].

So

U{O} = Spec(C[M ]) ∼= C× × · · · × C×︸ ︷︷ ︸
n copies

= (C×)n

is an affine algebraic torus. All of our semigroups Sσ are additive subsemi-
groups of M , so C[Sσ] is a C-subalgebra of C[M ] with {eu | u ∈ Sσ} as a
basis. Then Uσ obviously coincides with the set of closed points of the affine
scheme Spec(C[Sσ]), with a morphism Spec(C[M ])→ Spec(C[Sσ]).

This morphism already gives a hint on that how to glue those affine toric
varieties associated to different faces together. But before we proceed to that,
let’s first have a look at the algebraic torus, a fundamental class of toric
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varieties, in more detail. The torus T = TN corresponding to N can be
written intrinsically:

TN = Spec(C[M ]) = HomZ(M,C×) = N ⊗Z C×.
Each u ∈M gives rise to a character eu, which is a homomorphism eu : TN →
C× defined by eu(p) := p(u) for p ∈ TN . We also have the exponential law

eu+u′ = eueu
′

for u, u′ ∈ M . In particular, We have eO = 1 and can identify
M with the character group of TN .

On the other hand, each v ∈ N gives rise to a one-parameter subgroup
γv : C× → TN , which is a homomorphism defined by γv(t)(u) := t(u,v) for
t ∈ C× and u ∈M . We also have γv+v′ = γv · γv′ for v, v′ ∈ N , so that we can
identify N with the group of one-parameter subgroups of TN .

We can also explain the above expression in an explicit way. Choose a
basis {v1, · · · , vn} of N and let {u1, · · · , un} be the dual basis of M . If we
denote the character eui by xi, then we have an isomorphism

TN
∼−→ (C×)n

which sends p to (x1(p), · · · , xn(p)). Thus (x1, · · · , xn) can be regarded as a
coordinate system for TN . For u =

∑
1≤i≤n aiui, we have eu = xa11 · · ·xann . On

the other hand, v =
∑

1≤i≤n bivi gives rise to a homomorphism

γv : C× → TN

which sends t to (tb1 , · · · , tbn) ∈ (C×)n ∼= TN .
Note that an algebraic torus is a commutative algebraic group.
First let us see some examples for which how a strongly convex rational

polyhedral cone gives rise to an affine toric variety.

Example 1.11. Suppose n = 2. Choose a basis {v1, v2} of N and let {u1, u2}
be the dual basis of M .

(i) If σ = R≥0v1 + R≥0v2, then σ∨ = R≥0u1 + R≥0u2. Hence Sσ =

Z≥0u1 + Z≥0u2 and we have an isomorphism (eu1 , eu2) : Uσ
∼−→ C2.

(ii) If σ = R≥0v1, then σ∨ = R≥0u1 + Ru2. Thus Sσ = Z≥0u1 + Z≥0u2 +
Z≥0(−u2) and the embedding (eu1 , eu2 , e−u2) : Uσ → C3 gives rise to an iso-

morphism Uσ = {(x1, x2, x2) ∈ C3 | x2x3 = 1} ∼−→ {(x1, x2) ∈ C2 | x2 6= 0} =
C× C×.

(iii) If σ = R≥0v1 + R≥0(v1 + 2v2), then σ∨ = R≥0(2u1 − u2) + R≥0u2.
Thus Sσ = Z≥0u1 + Z≥0u2 + Z≥0(2u1 − u2). And from the embedding
(eu1 , eu2 , e2u1−u2) : Uσ → C3 we can see that Uσ = {(x1, x2, x3) ∈ C3 | x2

1 =
x2x3} which has an isolated singularity at the origin O = {0, 0, 0}.

If τ is a face of σ, then there exists a u0 ∈ σ∨∩M such that τ = σ∩{u0}⊥ =
{v ∈ σ | (u0, v) = 0}. Thus τ is also a strongly convex rational polyhedral
cone in NR so that Sτ can be written as Sτ = Sσ + Z≥0(−u0). Hence the
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map Spec(C[Sτ ]) = Uτ → Uσ = Spec(C[Sσ]) embeds Uτ as a principle open
subset of Uσ. So it is natural to introduce a notion which is a collection of
those strongly convex rational polyhedral cones in order to glue those pieces
of affine toric varieties together to a toric variety.

Usually a nonempty collection of strongly convex rational polyhedral cones
σ in NR is called a fan 4 if it satisfies the following conditions:

(i) Every face of a cone in 4 is still a cone in 4;
(ii) The intersection of two cones in 4 is a face of each cone.

The union |4| := ∪σ∈4σ is called the support of 4.
Now we are prepared to construct a toric variety from simplicial geometry.
Associate to a fan 4 the toric variety X(4) can be constructed as follows:

first taking the disjoint union of the affine toric varieties Uσ, one for each cone
σ ∈ 4 and then gluing in a way which has already been mentioned: for cones
σ and τ , since the intersection σ ∩ τ is a face of each of σ and τ and is thus
still a cone in 4, so that Uσ∩τ is identified as a principle open subvariety of Uσ
and of Uτ , then we can glue Uσ and Uτ via the identification on Uσ∩τ . These
identifications are compatible because the correspondence from cones to affine
varieties is order-preserving. And the constructed variety is separated because
the diagonal map Uσ∩τ → Uσ × Uτ is closed.

Example 1.12. Suppose n = 1. Then N = Z.
(i) If σ := R≥0 ⊂ NR, then 4 := {σ, {O}} is a fan. We obtain X(4) by

embedding U{O} = C× into Uσ ∼= C.
(ii) If σ := R≥0, then 4 := {σ,−σ, {O}} is a fan. We obtain X(4) by

gluing Uσ ∼= C and U−σ ∼= C along their common open subset U{O} = C×. It’s

just the complex projective line P1(C).

Example 1.13. Suppose n = 2. Choose a basis {v1, v2} of N and let {u1, u2}
be the dual basis of M .

(i) Let σ1 := R≥0v1 and σ2 := R≥0v2, then 4 = {σ1, σ2, {O}} is a fan. We
obtain X(4) = C2\{(0, 0)} by gluing Uσ1 = C×C× and Uσ2 = C× ×C along
their common open subset U{O} = (C×)2.

(ii) Let v3 := −v1 − v2 and σ1 := R≥0v1 + R≥0v2, σ2 := R≥0v1 + R≥0v3,
σ3 := R≥0v2 + R≥0v3. then 4 = {σ1, σ2, σ3,R≥0v1,R≥0v2,R≥0v3, {O}} is a
fan. We obtain X(4) = P2(C), the complex projective plane, by gluing these
affine toric varieties along their common open subsets.

(iii) For a ∈ Z, let σ1 := R≥0v1 + R≥0v2, σ2 := R≥0v1 + R≥0(−v2), σ3 :=
R≥0(−v1 + av2) + R≥0v2, σ4 := R≥0(−v1 + av2) + R≥0(−v2). Then

4 = {σ1, σ2, σ3, σ4,R≥0v1,R≥0v2,R≥0(−v1 + av2),R≥0(−v2), {O}}

is a fan. We obtain the so-called Hirzebruch surface X(4) ∼= P1 × P1, usually
denoted by Fa.
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Now let us see how the algebraic torus TN acts on X(4). Let g ∈ TN
and x ∈ Uσ, then g : M → C× is a homomorphism and x : Sσ → C satisfies
x(O) = 1 and x(u+u′) = x(u)x(u′) for u, u′ ∈ Sσ. We can define gx : Sσ → C
by (gx)(u) := g(u)x(u) for u ∈ Sσ. Note that gx is also an element of Uσ.
This actually gives rise to an action of TN on Uσ, hence on X(4) by natural
gluing. In fact, we can decompose X(4) into TN -orbits in terms of 4. For
each σ ∈ 4 we can define a quotient algebraic torus of TN as follows:

orb(σ) := {x : M ∩ σ⊥ → C× | group homomorphisms},
which can be regarded as a TN -orbit in X(4). Conversely, every TN -orbit is
of this form and given in this way.

Proposition 1.14. 4 is in one-to-one correspondence with the set of TN -
orbits in X(4). Furthermore, orb(σ) has a complementary dimension of σ in
NR.

We can easily see that orb({O}) = U{O} = TN and orb(σ) is contained in
the closure of orb(τ) if and only if τ ≺ σ. Thus we have Uσ =

⋃
τ≺σ orb(τ).

As we already described in the preceding discussion, we can associate to
v ∈ N a one-parameter subgroup γv : C× → TN defined by γv(t)(u) = t(u,v).
If we analyze the limit limt→0 γv(t), we find that limt→0 γv(t) exists in Uσ if
and only if v ∈ σ. Following this way, we shall see that

Theorem 1.15. A toric variety X(4) is compact if and only if its support
|4| is the whole space NR.

In this thesis, the lattice M is always given by a root lattice.





CHAPTER 2

Affine structures

In this chapter we construct a projective structure on a toric arrangement
complement H◦. This is equivalent to constructing an affine structure on
H◦×C×, i.e., producing a torsion free flat connection on H◦×C×. In Section
2.1, we provide a general idea on how to construct such a desired connection
on M × C× out of a given connection on a complex manifold M . In Section
2.2, following the idea of last section, we do construct such a connection for
H◦ × C×, which is inspired by the work of Heckman and Opdam on special
hypergeometric system associated with a root system. In Section 2.3, we show
the constructed connection on H◦ × C× can be flat as long as we choose an
appropriate bilinear form aκ for it.

2.1. Projective structures

Let M be a complex manifold of dimension n.

Definition 2.1. A projective structure on M is given by an atlas of holomor-
phic charts for which the transition maps are projective-linear and which is
maximal for that property. Likewise, an affine structure on M is given by an
atlas of holomorphic charts for which the transition maps are affine-linear and
which is maximal for that property.

So a projective structure onM is locally modelled on the pair (Pn,Aut(Pn))
of projective space and projective group and an affine structure is locally mod-
elled on the pair (An,Aut(An)) of affine space and affine group.

We recall from [6] that an affine structure defines a subsheaf of rank n+1 in
the structure sheaf OM containing constants, the sheaf of locally affine-linear
functions. The differentials of these make up a local system on the sheaf
ΩM of differentials on M , and such a local system is given by a holomorphic
connection on ΩM , ∇ : ΩM → ΩM ⊗ ΩM with extension ∇ : Ωk

M ⊗ ΩM →
Ωk+1
M ⊗ ΩM by the Leibniz rule ∇(ω ⊗ ζ) = d(ω) ⊗ ζ + (−1)kω ∧ ∇(ζ) for

k ∈ N. This connection is flat and torsion free. For any connection ∇ on ΩM

its square ∇2 : Ωk
M ⊗ΩM → Ωk+2

M ⊗ΩM is a morphism of OM -modules, given
by wedging with a section R of EndOM (ΩM ,Ω

2
M ⊗ ΩM ), called the curvature

21
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of ∇, and ∇ is flat if and only if R = 0. The connection ∇ on ΩM is also
torsion free, which means that the composite of ∧ : ΩM ⊗ ΩM → Ω2

M with
∇ : ΩM → ΩM ⊗ΩM is equal to the exterior derivative d : ΩM → Ω2

M . Indeed
flat differentials in ΩM are then closed, and provide by the Poincaré lemma
a subsheaf of OM of rank n + 1 containing constants. We refer to Deligne’s
lecture notes for an excellent exposition of the language of connections and
more [10]. Conversely, a torsion free flat connection on the cotangent bundle
of M defines an affine structure on M .

A projective structure can also be described in terms of a connection, at
least locally. Let us first observe that such a structure on M defines locally a
tautological C×-bundle π : L → M whose total space has an affine structure
and for which scalar multiplication respects the affine structure. This local
C×-bundle is unique up to scalar multiplication and need not be globally
defined.

We write a projective structure on M in terms of an affine structure on
M × C× in the following lemma.

Proposition 2.2. Let M be a complex manifold endowed with a holomorphic
connection ∇ : ΩM → ΩM ⊗ ΩM on its cotangent bundle. Suppose the con-
nection is torsion free and that its curvature, viewed as a OM -homomorphism
∇∇: ΩM → Ω2

M ⊗ ΩM , is given by wedging from the right with a symmetric

section −A of ΩM⊗ΩM : ζ 7→ −ζ∧A. Then an affine structure ∇̃ on M×C×
is given by

∇̃(ζ) = ∇(ζ)− ζ ⊗ dt

t
− dt

t
⊗ ζ,

∇̃(
dt

t
) = A− dt

t
⊗ dt

t
,

with ζ ∈ ΩM and t the coordinate on C×. Moreover, its local affine functions
are of the form c + tf , with f ∈ OM satisfying ∇(df) + fA = 0 and c ∈ C a
constant.

Proof. Put L := M ×C× and denote by π : L→M and t : L→ C× the
projections. Then we have

ΩL
∼= π∗ΩM ⊕OL

dt

t

and regard the natural map ΩM → π∗π
∗ΩM as an inclusion. We have to verify

that the connection ∇̃ : ΩL → ΩL ⊗ ΩL defined above is flat and torsion free.
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We first prove the flatness. Observe that for ω, ζ ∈ ΩM we have

∇̃(ω ⊗ ζ) = dω ⊗ ζ − ω ∧ (∇(ζ)− ζ ⊗ dt

t
− dt

t
⊗ ζ)

= ∇(ω ⊗ ζ) + (ω ∧ ζ)⊗ dt

t
− dt

t
∧ (ω ⊗ ζ)

which in turn implies

∇̃(∇(ζ)) = ∇2(ζ) + (∧∇)(ζ)⊗ dt

t
− dt

t
∧∇(ζ)

= ∇2(ζ) + dζ ⊗ dt

t
− dt

t
∧∇(ζ)

since ∇ is torsion free by assumption. Hence we get for ζ ∈ ΩM

∇̃2(ζ) =∇̃(∇(ζ)− ζ ⊗ dt

t
− dt

t
⊗ ζ)

=∇2(ζ) + dζ ⊗ dt

t
− dt

t
∧∇(ζ)− dζ ⊗ dt

t
+ ζ ∧ (A− dt

t
⊗ dt

t
)

+
dt

t
∧ (∇(ζ)− ζ ⊗ dt

t
− dt

t
⊗ ζ)

=∇2(ζ) + ζ ∧A = 0

by assumption. Observe that the above definition of ∇̃(dt/t) is equivalent to

∇̃(dt) = tA, and so we get

∇̃2(dt) = ∇̃(tA) = dt ∧A+ t∇̃(A)

= dt ∧A+ t(∇(A) + (∧A)⊗ dt

t
− dt

t
∧A)

= t∇(A) = 0

because A is symmetric, and using the Bianchi identity ∇(A) = 0. This proves

that ∇̃ is a flat connection.
The verification that ∇̃ is torsion free is easy. Indeed for ζ ∈ ΩM

∧ ∇̃(ζ) = ∧∇(ζ)− ζ ∧ dt
t
− dt

t
∧ ζ = dζ

∧ ∇̃(dt) = t(∧A) = 0

as should.
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Finally for ϕ ∈ OL of the form
∑
fkt

k with fk ∈ OM we get

∇̃(dϕ) =
∑
∇̃(tkdfk + kfkt

k dt

t
)

=
∑

tk(k
dt

t
⊗ dfk +∇(dfk)− dfk ⊗

dt

t
− dt

t
⊗ dfk)

+
∑

tk(kdfk ⊗
dt

t
+ k(k − 1)fk

dt

t
⊗ dt

t
+ kfkA)

=
∑

tk(∇(dfk) + kfkA) +
∑

k(k − 1)tkfk
dt

t
⊗ dt

t

+
∑

(k − 1)tk(dfk ⊗
dt

t
+
dt

t
⊗ dfk) = 0

if and only if fk = 0 for k 6= 0, 1 and f0, f1 ∈ OM are solutions of

df0 = 0 , ∇(df1) + f1A = 0 .

This completes the proof of the lemma.
�

Given a projective structure on M the pair (∇, A) of a torsion free con-
nection ∇ on ΩM whose curvature is given by ζ 7→ −ζ∧A with A a symmetric
section of ΩM ⊗ ΩM is not unique, because the proposition produces not
just the tautological line bundle, but also a trivialization t. Let us see how
this changes if we choose another local trivialization t′. Write t′ = teg, with
g ∈ OM . From dt′

t′ = dt
t + dg, we see that

∇̃(ζ) = ∇′(ζ)− ζ ⊗ dt′

t′
− dt′

t′
⊗ ζ

with

∇′(ζ) := ∇(ζ) + dg ⊗ ζ + ζ ⊗ dg.
Furthermore,

∇̃(
dt′

t′
) = ∇̃(

dt

t
+ dg)

= A− dt

t
⊗ dt

t
+∇(dg)− dg ⊗ dt

t
− dt

t
⊗ dg

= A+∇(dg) + dg ⊗ dg − dt′

t′
⊗ dt′

t′

= A′ − dt′

t′
⊗ dt′

t′

with

A′ := A+∇(dg) + dg ⊗ dg.
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It is worthwhile to write out the content of the above Proposition in lo-
cal coordinates z = (z1, · · · , zn) on M . Let ∇0 : ΩM → ΩM ⊗ ΩM be the
connection defined by ∇0(dzk) = 0 for all k.

Corollary 2.3. In these local coordinates let ∇ = ∇0 + Ω : ΩM → ΩM ⊗ΩM

be a connection on ΩM , so Ω : ΩM → ΩM⊗ΩM is a morphism of OM -modules
and Ω(dzk) =

∑
Γkijdz

i ⊗ dzj with Γkij the connection coefficients of ∇. Let
A be a quadratic differential on M , so A is a symmetric section of ΩM ⊗ΩM

given in the local coordinates as A =
∑
Aijdz

i ⊗ dzj with Aij = Aji for all
1 ≤ i, j ≤ n. Then the linear system of second order differential equations
∇(df) + fA = 0 for f ∈ OM takes in these local coordinates the explicit form

(∂i∂j +
∑

Γkij∂k +Aij)f = 0

for all 1 ≤ i, j ≤ n. It has local solution space of dimension at most n + 1
with equality if and only if the connection ∇ is torsion free and its curvature
R is given by ΩM 3 ζ 7→ −ζ ∧A ∈ Ω2

M ⊗ ΩM . In these local coordinates ∇ is

torsion free if and only if Γkij = Γkji for all 1 ≤ i, j, k ≤ n, and R(ζ) = −ζ ∧A
for all ζ ∈ ΩM if and only if 2Rk

lij = δkjAil− δki Ajl for all 1 ≤ i, j, k, l ≤ n with
δ the Kronecker symbol and

Rk
lij = (∂iΓ

k
lj − ∂jΓkli) +

∑
(ΓkmiΓ

m
lj − ΓkmjΓ

m
li )

the coefficients of the curvature matrix Rk
l =

∑
Rk
lijdz

i ∧ dzj of the curvature

R in the basis dzl.

Proof. In these local coordinates we have df =
∑

(∂jf)dzj for f ∈ OM
and so ∇0(df) =

∑
∂i∂j(f)dzi ⊗ dzj and hence ∇(df) + fA = 0 amounts to∑
(∂i∂jf +

∑
Γkij∂kf +Aijf)dzi ⊗ dzj = 0

which yields the above linear system of second differential equations. The
connection ∇ is torsion free if and only if ∧∇ = d which amounts to

∑
Γkijdz

i∧
dzj = 0 or equivalently Γkij = Γkji for all 1 ≤ i, j, k ≤ n. The curvature R of

∇ sends dzk to the element
∑

Rk
lij(dz

i ∧ dzj) ⊗ dzl and the condition that

R = ∇2 : ΩM → Ω2
M ⊗ ΩM is just equal to ζ 7→ −ζ ∧ A for ζ ∈ ΩM amounts

to

R(dzk) =
∑

Rk
lij(dz

i ∧ dzj)⊗ dzl =
∑

Ail(dz
i ∧ dzk)⊗ dzl = −dzk ∧A

for all 1 ≤ k ≤ n and so∑
Rk
lij(dz

i ∧ dzj) =
∑

Ail(dz
i ∧ dzk)
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for all 1 ≤ k, l ≤ n. Contraction with the vector field ∂m yields∑
2Rk

lmjdz
j =

∑
Rk
lij(δ

i
mdz

j − δjmdzi)

=
∑

Ail(δ
i
mdz

k − δkmdzi)

= Amldz
k −

∑
δkmAildz

i

=
∑

(δkjAml − δkmAjl)dzj

for all 1 ≤ k, l,m ≤ n. Hence the condition for the relation R(ζ) = −ζ ∧ A
becomes

2Rk
lij = δkjAil − δki Ajl

for all 1 ≤ i, j, k, l ≤ n. �

2.2. Differential operators and connections on tori

We consider the situation discussed above in the special case where the
underlying complex manifold is an algebraic torus.

Let a be a real vector space of dimension n endowed with an inner product
(·, ·) (making it a Euclidean vector space). The inner product identifies a with
its dual a∗, so that the latter also is endowed with an inner product, by abuse
of notation still denoted by (·, ·). Suppose also given a reduced irreducible
finite root system R ⊂ a∗. Then the corresponding orthogonal reflection for
each α ∈ R

sα(β) = β − 2(β, α)

(α, α)
α, β ∈ a∗

preserves the set R and the crystallographic condition

2(β, α)

(α, α)
∈ Z

holds for all α, β ∈ R. Let Q = ZR denote the root lattice in a∗ and denote
the corresponding dual root system in a by R∨. We then have the coweight
lattice P∨ = Hom(Q,Z) of R∨ in a. Hence

H = Hom(Q,C×)

is a so-called adjoint algebraic torus with (rational) character lattice Q.
We denote the Lie algebra of H by h, so h = C⊗ a and H = h/2π

√
−1P∨

as a complex torus. For v ∈ h we denote by ∂v the associated translation
invariant vector field on H. Likewise, if we are given φ ∈ h∗, then we denote by
dφ the associated translation invariant differential on H. In case φ determines
a character of H (meaning φ ∈ Q), we denote that character by eφ. If exp :
h → H = h/2π

√
−1P∨ is the exponential map with the inverse log : H → h,

then we have eφ(h) = eφ(log h) for all h ∈ H. We also have dφ = (eφ)∗(dtt ) with
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t the coordinate on C×. We denote the (flat) translation invariant connections

on H and H × C× by ∇0 and ∇̃0 respectively (so that ∂v = ∇0
∂v

).
Each α in R determines a character eα, then R generates the character

lattice Q and each element of R is primitive in Q. So the set R+ := R/± of
antipodal pairs in R indexes in one-one manner the kernels of these characters.
The kernel Hα = {h ∈ H | eα(h) = 1} has its Lie algebra hα which is
the zero set of α. We call the finite collection of these hypertori Hα’s a
toric arrangement associated with a root system R. We write H◦ for the
complement of the union of these hypertori as follows:

H◦ := H − ∪α∈R+Hα.

Let K be the space of multiplicity parameters for R defined as the space
of W -invariant functions

κ = (kα)α∈R ∈ CR

where W is the Weyl group generated by all reflections sα. We shall sometimes
write ki instead of kαi if α1, · · · , αn is a basis of simple roots in R+. It is clear
that K is isomorphic to Cr as a C-vector space if r is the number of W -orbits
in R (i.e., r = 1 or 2). Hence for convenience, we sometimes also write k for
k1 and k′ for kn if αn /∈ Wα1 when no confusion can arise. But note that k′

has a different meaning for type An, which can be seen from Remark 2.5.
We also have given for each α ∈ R a nonzero coroot α∨ ∈ h such that

(−α)∨ = −α∨ and α∨(α) = 2. Let

aκ : h× h→ C, bκ : h× h→ h

be a symmetric bilinear form and a symmetric bilinear map respectively, which
are invariant and equivariant under the W action respectively. We notice that
aκ is just a multiple of the given inner product (·, ·) by the Schur’s lemma
since R is irreducible.

Lemma 2.4. If R is irreducible then bκ vanishes unless R is of type An for
n ≥ 2 in which case there exists a k′ ∈ C such that

bκ(u, v) =
1

2
k′
∑
α>0

α(u)α(v)α′ for any u, v ∈ h

with α′ = εi + εj − 2
n+1

∑
l εl if we take the construction of α from Bourbaki

[2]: α = εi − εj for 1 ≤ i < j ≤ n+ 1.

Proof. We write b for bκ if no confusion arises. Obviously we can identify
b with an element of Hom(a,Sym2(a∗))W . First fix a positive definite generator
g of Sym2(a∗)W and then choose a line L ⊂ a such that its g-orthogonal
complement H ⊂ a is a hyperplane for which RH := R∩H spans H and is an
irreducible root system. We decompose Sym2(a∗) = Sym2(H∗)⊕ (L∗⊗H∗)⊕
(H∗ ⊗ L∗) ⊕ (L∗)⊗2. If we consider the W (RH)-invariant part, the middle
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two summands immediately become trivial since (H∗)W (RH) = 0. Then we

have Sym2(a∗)W (RH) = RgL ⊕ Rg where g = gH + gL and gH resp. gL is the
restriction of g on H resp. L.

Let f ∈ Hom(a, Sym2(a∗))W , then f(v) = µgL + λg for some v ∈ L since
L belongs to the W (RH)-invariant part. Assume that there exists a w such
that w(v) = −v. Since w preserves both gL and g, we must have µ = λ = 0
by the linearity of f and thus f(v) = 0. Since the W -orbit of v spans V , it
follows that f = 0.

This assumption is certainly satisfied when −1 ∈ W . Let’s consider the
remaining cases: An≥2, Dodd and E6. For E6, we take v to be a root, then
RH is of type A5. For Dodd, we take v perpendicular to a subsystem of type
Dn−1, then there is a w whose restriction to H is a reflection (in terms of the
construction in Bourbaki: v = ε1 and w = sε1−ε2sε1+ε2).

When R is of type An≥2, we use the construction in Bourbaki again: a

is the hyperplane in Rn+1 defined by
∑n+1

i=1 xi = 0. Put x̄i := xi|a so that∑
i x̄i = 0. Let ε̄i ∈ a be the orthogonal projection of εi ∈ Rn+1 in a. The

orthogonal complement of εi in a is spanned by a subsystem of type An−1.
Note that all the ε̄i’s make up a W -orbit with sum zero. So if we write f(ε̄i) =

µx̄2
i + λg, sum them up, we get 0 =

∑n+1
i=1 f(ε̄i) = µ

∑n+1
i=0 x̄

2
i + (n + 1)λg.

Hence we have f(ε̄i) = µ(x̄2
i − 1

n+1

∑n+1
i=1 x̄

2
i ). This indeed defines an element

of Hom(a, Sym2(a∗))W and we thus have dim(Hom(a,Sym2(a∗))W ) = 1.
Let b0(u, v) =

∑
α>0 α(u)α(v)α′. Since w(α′) = w(α)′ we have wb0(u, v) =

b0(wu,wv) for all u, v ∈ h and w ∈ W (An) = Sn+1. Then we see that b0 is a
generator of Hom(Sym2h, h)W . �

Remark 2.5. In fact, for type An, another generator is obtained by taking
v ∈ a 7→ ∂vσ3|a where σ̄3 := σ3|a is an element of (Sym3(a∗))W . This point
will become more clear when we discuss the toric Lauricella case in Example
2.12.

And because bκ exists for type An, we would like to include k′ in κ for
type An.

Then we define the vector fields

Xα :=
eα + 1

eα − 1
∂α∨

(notice that X−α = Xα) and consider for u, v ∈ h, the second order differential
operator on OH◦ defined by

Dκ
u,v := ∂u∂v +

1

2

∑
α>0

kαα(u)α(v)Xα + ∂bκ(u,v) + aκ(u, v).

We want this system to define a projective structure on H◦. That means for
each multiplicity parameter κ and each equivariant bilinear map bκ as above
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there exists a W -invariant bilinear form aκ such that the system of differential
equations Dκ

u,vf = 0 for all u, v ∈ h is integrable. It is obvious that this
projective structure is invariant under the action of W .

Taking the cue from Proposition 2.2, we associate to these data connections
∇κ = ∇0+Ωκ and ∇̃κ = ∇̃0+Ω̃κ on the cotangent bundles of H◦ and H◦×C×
with Ωκ ∈ Hom(ΩH◦ ,ΩH◦ ⊗ ΩH◦) given by

Ωκ : ζ ∈ ΩH◦ 7→
1

2

∑
α>0

kαζ(Xα)dα⊗ dα+ (Bκ)∗(ζ) (2.1)

and Ω̃κ ∈ Hom(ΩH◦×C× ,ΩH◦×C× ⊗ ΩH◦×C×) given by

Ω̃κ :


ζ ∈ ΩH◦ 7→

1

2

∑
α>0

kαζ(Xα)dα⊗ dα+ (Bκ)∗(ζ)− ζ ⊗ dt

t
− dt

t
⊗ ζ,

dt

t
∈ ΩC× 7→ Aκ − dt

t
⊗ dt

t
.

(2.2)
Here t is the coordinate for C× and Aκ and Bκ denote the translation invariant
tensor fields on H or H ×C× defined by aκ and bκ respectively. According to
(2.1), (2.2), we can write Ωκ and Ω̃κ explicitly:

Ωκ :=
1

2

∑
α>0

kαdα⊗ dα⊗Xα + (Bκ)∗,

Ω̃κ :=
1

2

∑
α>0

kαdα⊗ dα⊗Xα + (Bκ)∗ + cκ
∑
α>0

dα⊗ dα⊗ t ∂
∂t

−
∑
αi∈B

dαi ⊗
dt

t
⊗ ∂pi −

dt

t
⊗ dt

t
⊗ t ∂

∂t
−
∑
αi∈B

dt

t
⊗ dαi ⊗ ∂pi .

Here cκ is a constant for each κ such that Aκ = cκ
∑

α>0 dα ⊗ dα, B is
a fundamental system for R and pi is the dual basis of h to αi such that
αi(pj) = δij where δij is the Kronecker delta.

Example 2.6. We take a root system of type A2. We compute the curvature
form of the connection defined by this root system. For α, β, γ ∈ R+, we write

Ω :=
eα + 1

eα − 1
dα⊗ dα⊗ ∂α∨ +

eβ + 1

eβ − 1
dβ ⊗ dβ ⊗ ∂β∨ +

eγ + 1

eγ − 1
dγ ⊗ dγ ⊗ ∂γ∨ .

∇ = ∇0 + Ω such that ∇0(dα) = 0.

Here we let kα = 2 for all α and k′ = 0.
Let ζ = c1dα+ c2dβ ∈ ΩH◦ , then we have

∇(ζ) =
eα + 1

eα − 1
dα⊗ ζ(∂α∨)dα+

eβ + 1

eβ − 1
dβ ⊗ ζ(∂β∨)dβ +

eγ + 1

eγ − 1
dγ ⊗ ζ(∂γ∨)dγ,
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and furthermore,

∇∇(ζ)

=− eα + 1

eα − 1
dα ∧∇(ζ(∂α∨)dα)− eβ + 1

eβ − 1
dβ ∧∇(ζ(∂β∨)dβ)

− eγ + 1

eγ − 1
dγ ∧∇(ζ(∂γ∨)dγ)

=− eα + 1

eα − 1
dα ∧ ζ(∂α∨)

(eα + 1

eα − 1
dα⊗ ∂α∨(dα)dα+

eβ + 1

eβ − 1
dβ ⊗ ∂β∨(dα)dβ

+
eγ + 1

eγ − 1
dγ ⊗ ∂γ∨(dα)dγ

)
− eβ + 1

eβ − 1
dβ ∧ ζ(∂β∨)

(eα + 1

eα − 1
dα⊗ ∂α∨(dβ)dα+

eβ + 1

eβ − 1
dβ ⊗ ∂β∨(dβ)dβ

+
eγ + 1

eγ − 1
dγ ⊗ ∂γ∨(dβ)dγ

)
− eγ + 1

eγ − 1
dγ ∧ ζ(∂γ∨)

(eα + 1

eα − 1
dα⊗ ∂α∨(dγ)dα+

eβ + 1

eβ − 1
dβ ⊗ ∂β∨(dγ)dβ

+
eγ + 1

eγ − 1
dγ ⊗ ∂γ∨(dγ)dγ

)
,

then making use of α + β + γ = 0 and dα ∧ dβ = dβ ∧ dγ = dγ ∧ dα, we can
write the curvature form as follows,

∇∇ =− eα + 1

eα − 1

eβ + 1

eβ − 1
dα ∧ dβ ⊗ (dα⊗ ∂β∨ − dβ ⊗ ∂α∨)

− eγ + 1

eγ − 1

eα + 1

eα − 1
dγ ∧ dα⊗ (dγ ⊗ ∂α∨ − dα⊗ ∂γ∨)

− eβ + 1

eβ − 1

eγ + 1

eγ − 1
dβ ∧ dγ ⊗ (dβ ⊗ ∂γ∨ − dγ ⊗ ∂β∨)

=− dα ∧ dβ ⊗ (dβ ⊗ ∂α∨ − dα⊗ ∂β∨).

Then let

A = dα⊗ dα+ dβ ⊗ dβ + dγ ⊗ dγ
= 2dα⊗ dα+ 2dβ ⊗ dβ + dα⊗ dβ + dβ ⊗ dα,

we can easily verify that

∇∇(ζ) = −ζ ∧A.

Since Ωκ and Ω̃κ take values in the symmetric tensors, the connections
they define are torsion free. The inversion involution of H◦ × C× acts on
its space of logarithmic differentials, so that the latter decomposes into it-
s subspace of invariants and the subspace of anti-invariants. The collection
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{ eα+1
eα−1dα}α∈R+ consists of linearly independent invariants, whereas the anti-

invariants are the translation invariant differentials {dα}α∈R+ . In particular,

Ω̃κ is logarithmic (in the sense that its matrix entries are logarithmic differen-
tials) and is uniquely given by the form (2.2). An associated connection ∇κ on
the cotangent bundle of H◦ is given by the corresponding connection matrix
Ωκ. We have from Corollary 2.3:

Lemma 2.7. Let f ∈ OH◦. Then we have Dκ
u,v(f) = 0 for all u, v ∈ h if

and only if the function f̃(z, t) := c + f(z)t has a flat differential relative to

∇̃κ. Moreover, any exact differential in ΩH◦×C× which is ∇̃κ-flat is of the

form df̃ . Then the connection ∇̃κ defines an affine structure on H◦×C× and
hence ∇κ defines a projective structure on H◦ if and only if −Aκ represents
the curvature of ∇κ.

Then we can rewrite the above lemma in the form of a special hypergeo-
metric system associated with a root system R which is due to [7].

Theorem 2.8. Let f ∈ OH◦. The system of n(n+ 1)/2 linearly independent
differential equations

(∂u∂v +
1

2

∑
α>0

kαα(u)α(v)
eα(h) + 1

eα(h)− 1
∂α∨ + ∂bκ(u,v) + aκ(u, v))f(h) = 0 ∀u, v ∈ h

(2.3)

is an integrable system on H◦ if and only if the function f̃(z, t) := c + f(z)t

has a flat differential relative to ∇̃κ and −Aκ represents the curvature of ∇κ,
where Aκ is the translation invariant tensor field on H◦ defined by aκ.

Proof. From Proposition 2.2, we can know that the function f̃(z, t) :=

c+f(z)t has a flat differential relative to ∇̃κ is equivalent to f ∈ OH◦ satisfying
∇κ(df) + fAκ = 0. While the integrability of the system can be guaranteed
by that −Aκ represents the curvature of ∇κ.

For ω ∈ Ω1(H◦), we have

∇κ(ω) = dω +
1

2

∑
α>0

kα
eα + 1

eα − 1
dα⊗ dα · α∨(ω) + (Bκ)∗(ω).

Its covariant derivative in direction v ∈ h is:

∇κv(ω) = ∂vω +
1

2

∑
α>0

kα
eα + 1

eα − 1
dα · α(v)α∨(ω) + (Bκ

v )∗(ω).
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Let ω = df , we have

∇κv(df) = ∂v(df) +
1

2

∑
α>0

kα
eα + 1

eα − 1
dα · α(v)α∨(df) + (Bκ

v )∗(df)

= d(∂vf) +
1

2

∑
α>0

kα
eα + 1

eα − 1
α(v) · ∂α∨f · dα+ (Bκ

v )∗(df).

Now contraction with u:

∇κv(df)(u) = ∂u∂vf +
1

2

∑
α>0

kα
eα + 1

eα − 1
α(u)α(v)∂α∨f + ∂bκ(u,v)f,

yields an element of OH◦ .
So, ∇κ(df) + fAκ = 0 is equivalent to

∂u∂vf +
1

2

∑
α>0

kαα(u)α(v)
eα + 1

eα − 1
∂α∨f + ∂bκ(u,v)f + aκ(u, v)f = 0 ∀u, v ∈ h

�

We call (2.3) the special hypergeometric system with multiplicity param-
eter κ.

2.3. Flatness of ∇̃κ

We want to see whether or not ∇̃κ is indeed flat. For this we wish to
apply the flatness criterion (1.2) of [21] to ∇̃κ. Here we restate the criterion
as follows.

Lemma 2.9. Let U be a connected complex manifold. Suppose that U ⊃ U
is a smooth completion of U which adds to U an arrangement-like divisor D
whose irreducible components Di are smooth. Suppose that U has no nonzero
regular 2-forms and that any irreducible component Di has no nonzero regular
1-forms. Then a logarithmic connection E on the trivial vector bundle U × V
over U is flat if and only if for every intersection I of two distinct irreducible
components of D, the sum

∑
Di⊃I ResDiE commutes with each of its terms

ResDiE (Di ⊃ I).

Proof. First we prove the following fact.
Assertion: The condition that [

∑
Di⊃I ResDiE,ResDiE] = 0 is equivalent to

ResIResDiR(∇) = 0.
The connection E on U could be locally written as

E =
∑
i

fi
dli
li
⊗ Ei +

∑
i

ωi ⊗ E′i,
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where fi’s are holomorphic functions, Di is given by li = 0, ωi’s are holomor-
phic 1-forms and Ei’s, E

′
i’s are the endomorphisms of V . Then we have

ResDiE = fi|li=0Ei

and

E ∧ E =
∑
i,j

fifj
dli
li

dlj
lj
⊗ EiEj +

∑
i,j

fi
dli
li
∧ ωj ⊗ (EiE

′
j − E′jEi)

+
∑
i,j

ωiωj ⊗ E′iE′j

=
∑
i<j

fifj
dli
li

dlj
lj
⊗ (EiEj − EjEi) +

∑
i,j

fi
dli
li
∧ ωj ⊗ (EiE

′
j − E′jEi)

+
∑
i,j

ωiωj ⊗ E′iE′j .

Then

ResDiE ∧ E =
∑
j:j 6=i

fifj
dlj
lj
|li=0 ⊗ (EiEj − EjEi) +

∑
j:j 6=i

fiωj ⊗ [Ei, E
′
j ],

As I ⊂ Di is given by Dj ∩Di for any j 6= i with Dj ⊃ I, we have

ResIResDiE ∧ E =
∑

j:Dj⊃I,j 6=i
fifj |I(EiEj − EjEi) =

∑
j:Dj⊃I,j 6=i

fifj |I [Ei, Ej ] = [fi|IEi,
∑
j

fj |IEj ] = [ResDiE,
∑

ResDjE].

Since the double residue of dE is obviously zero (any term of dE is of at most
simple pole), the assertion follows.

Let’s continue to prove the lemma. Necessity is obvious, but it is also
sufficient: If the double residue of R(∇) is equal to zero, then ResDiR(∇) has
no pole along I ⊂ Dj ∩Di for ∀Dj 6= Di , hence ResDiR(∇) has as coefficients
regular 1-form along Di, but there is no nonzero regular 1-form along Di, we
then have ResDiR(∇) = 0. Again, R(∇) has no pole along Di, hence R(∇)
has as coefficients regular 2-form everywhere, but there is no nonzero regular
2-form on U , we then have R(∇) = 0. �

From the lemma above, we can see that it requires a compactification of
H◦ × C× with a boundary which is arrangementlike in order to invoke the
flatness criterion. We shall take this to be of the form ĤΣ×P1, where the first
factor is defined below.

Recall that H has a unique Q-structure which is split, i.e., for which H(Q)
is isomorphic to a product of copies of Q×. Each homomorphism u : C× → H
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defines a tangent vector Du(t ∂∂t) ∈ h(Q) and these tangent vectors span a

lattice X̌(H) ⊂ h(Q), called the cocharacter lattice. We shall identify X̌(H)
with Hom(C×, H) = P∨.

Since the hα’s are defined over Q, they cut up h(R) according to a rational
cone decomposition Σ. The latter determines a compact torus embedding H ⊂
Ĥ whose boundary is a union of toric divisors, indexed by the one-dimensional
faces of Σ. We denote by Π the set of primitive elements of X̌(H) in spanning
a face of Σ and associate an element p of Π with a boundary divisor Dp at the
place of infinity. Our assumption that eα is primitive in X(H) = Q implies
that Hα is connected and hence irreducible. So an irreducible component of
Ĥ −H◦ is now either the closure Ĥα in Ĥ of some Hα or is equal to some Dp

with p ∈ Π.
Two distinct boundary divisors meet precisely when the corresponding

one dimensional faces of Σ span a two dimensional face. Clearly, the divisors
(t = 0) and (t = ∞) meet all other divisors, and Ĥα meets Dp if and only if
α(p) = 0.

We shall not make any notational distinction between a connection on the
cotangent bundle of H◦ × C× and the associated one on its tangent bundle,
i.e., the connection on its tangent bundle is also denoted by ∇̃κ. In fact, the
associated (dual) connection on the tangent bundle of H◦×C× is characterized
by the property that the pairing between vector fields and differentials is flat.
So its connection form is −(Ω̃κ)∗.

The residue of (Ω̃κ)∗ along these divisors are as follows: define elements of
End(h) ⊂ End(h⊕ C) by

uα := kα(α∨ ⊗ α),

Ux := −1

4

∑
α∈R
|α(x)|uα, x ∈ h(R).

So u−α = uα and U−x = Ux. Notice the dependence of Ux on x is piecewise
linear (relative to Σ) and continuous. For z ∈ h, we define bκz ∈ End(h) and
aκz ∈ h∗ as follows:

bκz (w) := bκ(z, w),

aκz (w) := aκ(z, w).

We first need to compute the following residues.
Notice that dα = d(log eα) = deα

eα and the mappings:

C×
γp−→H eα−→ C×

t 7→ tα(p),
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we have

ResĤα×P1

eα + 1

eα − 1
dα = Res(eα=1)

eα + 1

eα − 1

d(eα − 1)

eα

= 2,

ResDp×P1

eα + 1

eα − 1
dα = Rest=0γ

∗
p(
eα + 1

eα − 1

deα

eα
)

= Rest=0
tα(p) + 1

tα(p) − 1
α(p)

dt

t

=

{
tα(p)+1
tα(p)−1

α(p)dtt = −α(p) if α(p) > 0
1+t−α(p)

1−t−α(p)α(p)dtt = +α(p) if α(p) < 0

= −|α(p)|,

ResDp×P1dα = Rest=0γ
∗
p(
deα

eα
)

= Rest=0α(p)
dt

t
= α(p);

then we can compute

ResĤα×P1(Ω̃κ)∗ =
1

2
Res(eα=1)kα

eα + 1

eα − 1
dα · α∨ ⊗ α

= kα(α∨ ⊗ α)

= uα,
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ResDp×P1(Ω̃κ)∗

=
1

4

∑
α∈R

ResDp×P1kα
eα + 1

eα − 1
dα · α∨ ⊗ α+ ResDp×P1Bκ

+ cκ
∑
α>0

ResDp×P1dα · t
∂

∂t
⊗ α−

∑
αi∈B

ResDp×P1dαi · pi ⊗
dt

t

=
1

4

∑
α∈R

kα(−|α(p)|α∨ ⊗ α) + ResDp×P1Bκ

+ cκ
∑
α>0

α(p) · t ∂
∂t
⊗ α−

∑
αi∈B

αi(p) · pi ⊗
dt

t

=Up + bκp + t
∂

∂t
⊗ aκp − p⊗

dt

t
,

and

Rest=0(Ω̃κ)∗ = Rest=0(−dt
t

) · t ∂
∂t
⊗ dt

t
+
∑
αi∈B

Rest=0(−dt
t

) · pi ⊗ αi

= −t ∂
∂t
⊗ dt

t
−
∑
αi∈B

pi ⊗ αi

= −1C − 1h

= −1h⊕C

= −Rest=∞(Ω̃κ)∗.

We shall sometimes drop κ from ∇κ, ∇̃κ, aκ and bκ when no confusion
arises, but we need to bear in mind all these notations appearing in what
follows in this Section depend on κ unless other specified.

Having these residues on hand and making use of Lemma 2.9, we have the
flatness criterion for ∇̃ as follows.

Lemma 2.10. The connection ∇̃ is flat (and thus defines an affine structure
on H◦ × C×) if and only if the following conditions hold:

(1) for every rank two sublattice L ⊂ Q, the sum
∑

α∈R∩L uα commutes with
each of its terms,

(2) each uα is self-adjoint relative to a (equivalently: a(α∨, z) = cαα(z)) for
some cα ∈ C),

(3) for every z ∈ h, bz is self-adjoint relative to a (equivalently: a(b(z1, z2), z3)
is symmetric in its arguments),
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(4) if α(p) = 0, then
(a) [uα, Up] = 0 and
(b) [uα, bp] = 0,

(5) if p, q ∈ Π span a two dimensional face of Σ, then
(a) [Up, bq] = [Uq, bp] and
(b) [Up, Uq] + [bp, bq] = p⊗ aq − q ⊗ ap.

Proof. From Lemma 2.9, we can know that the connection is flat if and
only if the Ω̃∗-residues along the added divisors have the property that the
collection of Ω̃∗-residues of divisors passing through any preassigned codimen-
sion two intersection has a sum which commutes with each of its terms. We
write this out for the present case.

For an intersection E × P1 of two distinct divisors of type Ĥα × P1 we get
(1): the characters of H that are trivial on E make up a primitive rank two

sublattice L of Q and R∩L is the set of α ∈ R for which Ĥα ⊃ E. Conversely,
for any rank two sublattice L ⊂ Q which contains two independent elements
of R, ∩α∈R∩LĤα is nonempty and of codimension two in Ĥ, then the sum∑

α∈R∩L uα commutes with each of its terms.

The intersection of Ĥα×P1 and Dp×P1 is nonempty only if α(p) = 0 and
in that case no other boundary divisor will contain that intersection; since

[Up + bp + t
∂

∂t
⊗ ap − p⊗

dt

t
, uα]

=[Up + bp, uα] + kα(a(p, α∨)t
∂

∂t
⊗ α

− α(t
∂

∂t
)α∨ ⊗ ap −

dt

t
(α∨)p⊗ α+ α(p)α∨ ⊗ dt

t
)

=[Up + bp, uα] + kαa(p, α∨)t
∂

∂t
⊗ α,

this yields [Up+bp, uα] = 0 and the condition that a(p, α∨) = 0 when α(p) = 0.
Since U−p = Up and b−p = −bp, we get (4). The hyperplane hα is spanned
by its intersection with Π. So the fact that a(α∨, p) = 0 for all p ∈ Π with
α(p) = 0 implies that a(α∨, y) = cαα(y) for some cα. This tells us that
a(uα(z), w) = cαα(z)α(w) is symmetric in z and w, in other words, uα is self-
adjoint relative to a. Conversely, if uα is self-adjoint relative to a, then clearly,
a(α∨, p) = 0 when α(p) = 0. So this amounts to (2).
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The intersection of Dp×P1 and Dq×P1 with p and q distinct is nonempty
only if p and q span a two dimensional face. In that case,

[Up + bp + t
∂

∂t
⊗ ap − p⊗

dt

t
, Uq + bq + t

∂

∂t
⊗ aq − q ⊗

dt

t
] =

[Up + bp, Uq + bq]− p⊗ aq + q ⊗ ap + t
∂

∂t
⊗ (ap(Uq + bq)− aq(Up + bp)).

(We used that a(p, q), b(p, q) and Up(q) = −1
2

∑
α∈R:α(p)>0,α(q)>0 kαα(p)α(q)α∨

are symmetric in p and q.) We thus have [Up+bp, Uq+bq] = p⊗aq−q⊗ap and
(ap(Uq + bq)− aq(Up + bp)). If we take its invariant and anti-invariant part in
the former equality,we immediately have [Up, Uq]+[bp, bq]+[Up, bq]− [Uq, bp] =
p⊗ aq − q⊗ ap and [Up, Uq] + [bp, bq]− [Up, bq] + [Uq, bp] = p⊗ aq − q⊗ ap, this
yields (5). The latter is equivalent to a(p, Uq(z)+b(q, z)) = a(q, Up(z)+b(p, z))
for all z. Since uα is self-adjoint relative to a, Up is self-adjoint relative to a as
well, we then have a(p, Uq(z)) = a(Uq(p), z) = a(Up(q), z) = a(q, Up(z)). The
latter condition hence simplifies to a(p, b(q, z)) is symmetric in p and q. Since
b itself is symmetric and p and q are basis roots of P∨, we get (3).

The residue on the divisors defined by t = 0 and t = ∞ are scalars and
hence yield no conditions. �

Remark 2.11. Following [6], Condition (1) is precisely what one needs in order
that for every sublattice L of X(H) spanned by elements of R the ’linearized
connection’ on h− ∪α∈R∩Lhα defined by the End(h)-valued differential

ΩL :=
∑

α∈R∩L
kα
dα

α
⊗ πα

be flat. According to loc. cit., it is also true that the sum
∑

α∈R∩L kαπα
commutes with each of its terms. If a is defined over R and positive definite,
then Conditions (1) and (2) define a Dunkl system in the sense of [6].

Now we need to verify these conditions of Lemma 2.10 in order to show
that the connection ∇̃ in our case could be flat if we choose an appropriate
bilinear form a. But before we proceed to that, it is absolutely necessary to
investigate the toric Lauricella case which gives a hint on these conditions.

Example 2.12 (The toric Lauricella case). Let N := {1, 2, · · · , n + 1} and
assign each i ∈ N a positive real number µi. Label the standard basis of
Cn+1 as ε1, · · · , εn+1. We endow Cn+1 with a bilinear form as a(z, w) :=∑n+1

i=1 µiz
iwi where z is given by z =

∑
ziεi. Let h be the quotient of Cn+1 by

its main diagonal ε := C
∑
εi, but we may often identify it with the orthogonal

complement of the main diagonal in Cn+1, that is, with the hyperplane defined
by
∑
µiz

i = 0. We take our α’s to be the collection αi,j := (zi−zj)i 6=j where zi
is the dual basis of εi in h∗. We associate each αi,j a vi,j := vzi−zj := µjεi−µiεj .
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We immediately notice that the set R := {αi,j} generates a discrete sub-
group of h∗ whose R-linear span defines a real form h(R) of h. It’s easy to
show that a(vi,j , β) = 0 for any β ∈ ker(αi,j). According to [6], for every rank
two subgroup L of the lattice generated by R,

∑
R∩L uαi,j commutes with each

of its terms, if uαi,j is the endomorphism of h defined by uαi,j (z) = αi,j(z)vi,j .
We still denote by Π the set of primitive elements of the cocharacter lattice

in spanning a face of the rational cone decomposition Σ. Then the elements
of Π correspond to proper subsets I of N :

pI :=
µI′

µN
εI −

µI
µN

εI′

where I ′ is the complement set of I in N , µI :=
∑

i∈I µi, and εI :=
∑

i∈I εi.
Let Ux :=

∑
αi,j∈R:αi,j(x)>0 αi,j(x)uαi,j . Notice that αi,j(pI) > 0 if and

only if i ∈ I and j ∈ I ′, its value then being 1. Put UI := UpI , we thus have:

UI(z) =
∑

i∈I,j∈I′
(zi − zj)(µjεi − µiεj)

= µI′
∑
i∈I

ziεi −
∑
j∈I′

µjz
j
∑
i∈I

εi −
∑
i∈I

µiz
i
∑
j∈I′

εj + µi
∑
j∈I′

zjεj

= (µI′
∑
i∈I

ziεi − (
∑
j∈I′

µjz
j)εI) + (µI

∑
j∈I′

zjεj − (
∑
i∈I

µiz
i)εI′).

Notice that the coefficients of εk and εl are the same whenever k, l are both
in I or both in I ′ and z ∈ αk,l. In other words, αk,l(UI(z)) = 0 for z ∈ αk,l
whenever αk,l(pI) = 0.

We also find that
UI(pI) = µNpI .

Notice that pI and pJ span a face if and only if I and J satisfy an inclusion
relation: I ⊂ J or I ⊃ J . A straightforward computation shows that

UJ(pI) = UI(pJ) = µJ ′pI + µIpJ ,

a(pI , pJ) =
µIµJ ′

µN
,

[UI , UJ ](z) = µN (a(z, pJ)pI − a(z, pI)pJ).

There actually exists a nonzero cubic form in this case. Let f̃ : Cn+1 → C
be defined by f̃(z) :=

∑
µi(z

i)3 and take for f : h → C its restriction to

h. The partial derivative of f̃ with respect to vi,j is 3µjµi(z
2
i − z2

j ), which is
divisible by αi,j .

The symmetric bilinear map b̃ : Cn+1×Cn+1 → Cn+1 is given by b̃(εi, εj) :=

δijεi. Then the map b : h× h→ h corresponding to f is the restriction of π ◦ b̃
to h × h among which π : Cn+1 → h is the orthogonal projection from Cn+1

to h. We also find that a(b̃(z, z), z) = f̃(z) and a(b(z, z), z) = f(z) . So if we
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write b̃i(z) for b̃(εi, z), we can write b̃i as b̃i = εi ⊗ zi. If we write bi,j(z) for
b(vi,j , z), then

bi,j = µjεi ⊗ zi − µiεj ⊗ zj −
µiµj
µN

εN ⊗ (zi − zj).

If we write ai,j(z) = a(vi,j , z), then ai,j = µiµj(zi − zj), we can verify that

[bi,j , bk,l] = −µ−1
N (vi,j ⊗ ak,l − vk,l ⊗ ai,j). Hence we have [bz, bw] = −µ−1

N (z ⊗
aw − w ⊗ az).

We first verify the conditions about the bilinear map b in Lemma 2.10
since as Lemma 2.4 says, a nonzero b only exists for a root system of type An.

Lemma 2.13. The conditions (3), (4)(b) and (5)(a) of Lemma 2.10 hold for
a root system of type An.

Proof. Now we let all µi equal to 1 in the above example, then the
above example becomes the case of a root system of type An. Since the
dimension of Hom(Sym2h, h)W is just 1, then the b0 =

∑
α>0 α⊗α⊗α′ given

in Lemma 2.4 is just a multiple of b given in the above example. We thus have
bi,j(z) = ziεi − zjεj − 1

n+1(zi − zj)εN . If i < j < k, then

a(bi,j(z), εj − εk) = −zj = a(bj,k(z), εi − εj);
if i, j, k, l are pairwise distinct, then

a(bi,j(z), εk − εl) = 0.

Since {εi − εi+1 | i = 1, 2, · · · , n} is a basis of h, Condition (3) holds.
It’s obvious that uα is self-adjoint relative to a where vα := kαα

∨. This
is equivalent to a(z, vα) = cαα(z) for some cα ∈ C. Since a(b(z, z), z) = f(z)
and ∂α∨f is divisible by α for each α ∈ R, there exists a gα ∈ h∗ such that
a(vα, b(z, w)) = α(z)gα(w) + α(w)gα(z). If p ∈ hα, then

a(w, bpuα(z)) = α(z)a(w, b(p, vα)) = α(z)a(vα, b(p, w)) = α(z)α(w)gα(p),

but also

a(w, uαbp(z)) = a(uα(w), b(p, z)) = α(w)a(vα, b(p, z)) = α(w)α(z)gα(p).

This yields Condition (4)(b): [uα, bp] = 0.
If p ∈ hα(R) spans a 1-face, then bpuα = uαbp implies that α(z)bp(vα) =

bpuα(z) = uαbp(z) = α(bp(z))vα. This shows that bp has vα as an eigenvector,
with eigenvalue λp,α, say. It could also be written as: bvα(p) = λp,αvα. Since
hα is generated by the 1-faces it contains, it follows that there is a unique linear
form λα on hα such that bvα(z) = λα(z)vα for all z ∈ hα. Choose v′α ∈ h such
that λα(z) = a(v′α, z) for all z ∈ hα. We can see that this v′α is unique up to a
multiple of vα since hα is the a-orthogonal complement of vα. So bvα has rank
at most two and will be of the form bvα(z) = a(v′α, z)vα + a(vα, z)v

′′
α for some
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v′′α ∈ h. Since bvα is self-adjoint relative to a, a(bvα(z), w) = a(v′α, z)a(vα, w) +
a(vα, z)a(v′′α, w) is symmetric in z and w. This means v′′α and v′α differ by a
multiple of vα. So by a suitable choice of v′α, we can arrange that v′α = v′′α.
Then

a(bvα(z), w) = a(v′α, z)a(vα, w) + a(vα, z)a(v′α, w)

= cα(a(v′α, z)α(w) + α(z)a(v′α, w)).

Let p, q ∈ h(R) span a face of Σ. Then

a(bq(z),Up(w))

= −1

2

∑
α:α(p)>0

α(p)α(w)a(bq(z), vα)

= −1

2

∑
α:α(p)>0

α(p)α(w)a(bvα(z), q)

= −1

2

∑
α:α(p)>0

cαα(p)α(w)(a(v′α, z)α(q) + α(z)a(v′α, q))

= −1

2

∑
α:α(p)>0

cα(α(p)α(q)a(v′α, z)α(w) + α(p)a(v′α, q)α(z)α(w)).

Since Up is self-adjoint relative to a, hence

a([Up, bq](z), w) = a(bq(z), Up(w))− a(bq(w), Up(z))

= −1

2

∑
α:α(p)>0

cαα(p)α(q)(a(v′α, z)α(w)− α(z)a(v′α, w)).

This is symmetric in p and q, because α(p) > 0 implies α(q) ≥ 0 and the terms
with α(q) = 0 vanish. So Condition (5)(a) holds: [Up, bq] = [Uq, bp]. �

Now we need to verify the other conditions for all the reduced irreducible
root systems.

Theorem 2.14. The connection ∇̃ defined in (2.2) is flat if we choose an
appropriate bilinear form a, and hence the connection ∇ defines a projective
structure on H◦.

Proof. By Lemma 2.4, Conditions (3), (4)(b) and (5)(a) are empty and
[bp, bq] = 0 for all types other than An. So we only need to verify those
remaining conditions in Lemma 2.10.

Because W acts irreducibly on the space spanned by L, hence by Schur’s
lemma the sum

∑
α∈R∩L uα acts as a scalar operator, Condition (1) is thus

satisfied. And there always exists a nondegenerate symmetric bilinear form
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a : h × h → R such that α∨ is a-perpendicular to ker(α), i.e., a(α∨, p) = 0 if
α(p) = 0. This implies Condition (2).

As the reflection sα and uα have the relation: uα = kα(1 − sα), uα com-
mutes with Up is equivalent to that sα commutes with Up. While sαuβs

−1
α =

usα(β), we have

sαUps
−1
α = sα(−1

4

∑
β∈R
|β(p)|uβ)s−1

α

= −1

4

∑
β∈R
|s2
α(β)(p)|usα(β)

= −1

4

∑
β′∈R
|sα(β′)(p)|uβ′ (here we let β′ = sα(β))

= −1

4

∑
β′∈R
|β′(sα(p))|uβ′

= −1

4

∑
β′∈R
|β′(p)|uβ′ (here sα(p) = p because α(p) = 0)

= Up.

So Condition (3) follows.
If p ∈ hα, then Up preserves hα and since Up is self-adjoint relative to

a, Up will have α∨ as an eigenvector. Since Cp + Cq is an intersection of
hyperplanes hα, the a-orthogonal complement of Cp + Cq is spanned by the
vectors α∨ it contains. Hence we have a common eigenspace decomposition
of this subspace for Up and Uq. In particular, these endomorphisms commute
there. Since [Up, Uq] is an element of the Lie algebra of the orthogonal group
of a whose kernel contains the a-orthogonal complement of Cp + Cq, it is
necessarily a multiple of p ⊗ aq − q ⊗ ap, i.e., [Up, Uq] = λ(p ⊗ aq − q ⊗ ap).
But for each pair of (p, q), we can choose a chamber C, a member of Σ that
is open and nonempty in h(R), and this pair of (p, q) could be pulled back by
an element of W to some 2-face of the closure of the chamber C̄. Notice Ux is
continuous on C̄ and the map (x, y) 7→ [Ux, Uy] is bilinear on C̄ × C̄, we can
know that all the pair of [Up, Uq] share the same coefficient of λ. In particular,
for R of types other than An, we can normalize a such that λ becomes equal
to 1. For R of type An, we know that [bp, bq] is also a multiple of p⊗aq−q⊗ap
and share the same coefficient µ for any pair of (p, q) from Example 2.12, so we
can also normalize a such that λ+µ = 1. Then, Condition (4) is satisfied. �

In fact, we can write out the explicit form of aκ in terms of a given inner
product (·, ·) according to the Condition (5)(b) of Lemma 2.10 if we want to
construct a projective structure on H◦.
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Theorem 2.15. If we use the construction of root systems in Bourbaki and
take the inner product (·, ·) such that (εi, εj) = δij, then the aκ such that ∇̃κ
is flat is given as follows:

An : aκ(u, v) =
(n+ 1)

4
(k2 − k′2)(u, v);

Bn : aκ(u, v) = ((n− 2)k2 + kk′)(u, v);

Cn : aκ(u, v) = ((n− 2)k2 + 2kk′)(u, v);

Dn : aκ(u, v) = (n− 2)k2(u, v);

En : aκ(u, v) = ck2(u, v); c = 6, 12, 30 for n = 6, 7, 8;

F4 : aκ(u, v) = (k + k′)(2k + k′)(u, v);

G2 : aκ(u, v) =
3

4
(k + 3k′)(k + k′)(u, v).

Proof. We already know that aκ is a multiple of the given inner product
by the Schur’s lemma if R is irreducible. Then it’s a straightforward computa-
tion by the Condition (5)(b) of Lemma 2.10: [Up, Uq]+[bp, bq] = p⊗aκq−q⊗aκp .
In fact, the aκ for type An can be obtained directly from Example 2.12.

Let’s determine the aκ for type Cn for example. Put p := ε1 + · · ·+ εs and
q := ε1 + · · · + εt. Assume that s < t without loss of generality. It’s obvious
that (p, p) = s and (p, q) = s. A straightforward computation shows that

Up(εm) = −(((n− 2)k + 2k′)εm + kp) for 1 ≤ m ≤ s;
Up(εm) = −skεm for s+ 1 ≤ m ≤ n.

Then we have

Up(p) = −((n− 2 + s)k + 2k′)p;

Up(q) = Uq(p) = −((n− 2)k + 2k′)p+ 2skq);

Uq(q) = −((n− 2 + t)k + 2k′)q.

Hence
[Up, Uq](p) = sk((n− 2)k + 2k′)p− sk((n− 2)k + 2k′)q.

We thus have
aκ(u, v) = ((n− 2)k2 + 2kk′)(u, v).

The remaining cases are left to the readers. �

Therefore, we have constructed a W -invariant projective structure on H◦

where H is an adjoint torus.





CHAPTER 3

Hyperbolic structures

In this chapter, we show that the toric arrangement complementH◦ admits
a hyperbolic structure when κ lies in some region so that its image under
the projective evaluation map lands in a complex ball. In Section 3.1, we
review the basic theory of geometric structures with logarithmic singularities.
In Section 3.2, we compute the eigenvalues of the residue endomorphisms
along those added divisors, which almost equals to obtaining the logarithmic
exponents along those divisors. In Section 3.3, we use the method of reflection
representation to investigate the corresponding Hermitian form so that we
can determine the hyperbolic region for H◦. In Section 3.4, we set up the
(projective) evaluation map and even give out the evaluation map around
those divisors in the form of local coordinates. In Section 3.5, we provide a
proof showing that the dual Hermitian form is greater than 0 when κ lies in
the hyperbolic region which means its image under the projective evaluation
map lands in a complex ball. In the final section, we show an example of ball
quotients, which actually strongly motivated current research.

3.1. Geometric structures with logarithmic singularities

We shall in this section introduce the geometric structures on a complex
manifold in a very brief way. A good exposition on this topic is Chapter 1 of
[6].

Let M̃ →M be a holonomy covering and denote by Γ its Galois group. So
Aff(M̃) := H0(M̃,AffM̃ ) is a Γ-invariant vector space of holomorphic functions

on M̃ . Then the set A of linear forms Aff(M̃)→ C which are the identity on

C is an affine Γ-invariant hyperplane in Aff(M̃)∗.

Definition 3.1. Given a holonomy cover as above, the evaluation map ev :
M̃ → A which assigns to z̃ the linear form evz̃ ∈ A : Aff(M̃) → C; f̃ 7→ f̃(z̃)
is called the developing map of the affine structure; it is Γ-equivariant and a
local affine isomorphism.

This tells us that a developing map determines a natural affine atlas on
M whose charts take values in A and whose transition maps lie in Γ.

45
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Definition 3.2. Suppose an affine structure is given on a complex manifold
M by a torsion free, flat connection ∇. We call a nowhere zero holomorphic
vector field E on M a dilatation field with factor λ ∈ C such that∇X(E) = λX
for every local vector field X.

If X is flat, then the torsion freeness yields: [E,X] = ∇E(X)−∇X(E) =
−λX. This tells us that Lie derivative with respect to E acts on flat vector
fields simply as multiplication by −λ. Hence it acts on flat differentials as
multiplication by λ.

Let h be a flat Hermitian form on the tangent bundle of M such that
h(E,E) is nowhere zero. Then the leaf space M/E of the dimension one
foliation defined by E inherits a Hermitian form hM/E in much the same way
as the projective space of a finite dimensional Hilbert space acquires its Fubini-
Study metric. We are especially interested in the case when hM/E is positive
definite:

Definition 3.3. Let M be a complex manifold with an affine structure and
there is a dilatation field E on M with factor λ. We say that a flat Hermitian
form h on M is admissible relative to E if it is in one of the following three
cases:

(1) elliptic: λ 6= 0 and h > 0;
(2) parabolic: λ = 0 and h ≥ 0 with kernel spanned by E;
(3) hyperbolic: λ 6= 0, h(E,E) < 0 and h > 0 on E⊥.

Then the leaf space M/E acquires a metric hM/E of constant holomorphic
sectional curvature, for it is locally isometric to a complex projective space
with Fubini-Study metric, to a complex-Euclidean space or to a complex-
hyperbolic space respectively.

In order to understand the behavior of an affine structure near a given
smooth subvariety of its singular locus, we need to blow up that subvariety
so that we are dealing with the codimension one case. Let’s first look at the
simplest degenerating affine structures as follows which is also in [6].

Definition 3.4. Let D be a smooth connected hypersurface in a complex
manifold M and let be given an affine structure on M −D. We say that the
affine structure on M −D has an infinitesimally simple degeneration along D
of logarithmic exponent λ ∈ C if

(1) ∇ extends to ΩM (logD) with a logarithmic pole along D,
(2) the residue of this extension along D preserves the subsheaf

ΩD ⊂ ΩM (logD) ⊗ OD and its eigenvalue on the quotient sheaf OD is λ
and

(3) the residue endomorphism restricted to ΩD is semisimple and all of its
eigenvalues are λ or 0.



3.1. Geometric structures with logarithmic singularities 47

We have the following local model for the behavior of the developing map
for such a degenerating affine structure [6].

Proposition 3.5. Let be given a smooth hypersurface D in a complex mani-
fold M , an affine structure on M −D and p ∈ D. Then the affine structure
has an infinitesimally simple degenerating along D at p of logarithmic expo-
nent λ ∈ C if and only if there exists a local equation t for D and a local chart
as follows

(F0, t, Fλ) : Mp → (T0 × C× Tλ)(0,0,0)

(Tλ incorporates into T0 when λ = 0), where T0 and Tλ are vector spaces, such
that the developing map near p is affine equivalent to the following multivalued
map with range T0 × C× Tλ):

λ /∈ Z : (F0, t
−λ, t−λFλ),

λ ∈ Z+ : (F0, t
−λ, t−λFλ) + log t.(0, A ◦ F0),

where A : T0 → C× Tλ is an affine-linear map,

λ ∈ Z− : (F0, t
−λ, t−λFλ) + log t.t−λ(B ◦ Fλ, 0, 0),

where B : Tλ → T0 is an affine-linear map,

λ = 0 : (F0, log t.α ◦ F0),

where α : T0 → C with α(0) 6= 0 is an affine-linear function.

When λ /∈ Z, the holonomy around Dp (and hence the monodromy around Dp)
is semisimple. When λ ∈ Z − {0}, the monodromy is semisimple if and only
if the associated affine-linear map is zero (and in that case the holonomy is
equal to the identity). When λ = 0, the monodromy is semisimple if and only
if α is constant and in that case the holonomy is a translation.

In fact, we need to understand what happens in case D is a normal cross-
ing divisor in the complex manifold M and the affine structure on M − D
degenerates infinitesimally simply along some irreducible component of D

Proposition 3.6. ([6]) Let be given a simple normal crossing divisor D in
a complex manifold M with smooth irreducible components D1, · · · , Dk and
an affine structure on M − D with infinitesimally simply degeneration along
Di of logarithmic exponent λi. Suppose that no λi is a negative integer, that
the holonomy around Di is semisimple unless λi = 0 and that for any pair
1 ≤ i < j ≤ k, the formation of the local affine quotient of the generic point of
Di extends across the generic point of Di ∩Dj. Let p ∈ ∩Di. Then λi 6= 0 for
i < k and the local affine retraction ri at the generic point of Di extends to
ri : Mp → Di,0 in such a manner that rirj = ri for i < j. Furthermore, there
exists a local equation ti for Di and a morphism to a vector space Fi : Mp → Ti
with Fi(p) = 0 such that these are the components of a chart for Mp and are
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such that the developing map is affine equivalent to the multivalued map

(F0, (t
−λ1
1 · · · t−λii (1, Fi))

k
i=1) : Mp → T0 ×

k∏
i=1

(C × Ti) when λk 6= 0;

(F0, (t
−λ1
1 · · · t−λii (1, Fi))

k−1
i=1 , t

−λ1
1 · · · t−λk−1

k−1 log tk) :

Mp → T0 ×
k−1∏
i=1

(C× Ti)× C when λk = 0.

3.2. Eigenvalues of the residue endomorphisms

We can see from the preceding section that it is important to know that
the eigenvalues of the residue maps of the connection ∇̃κ. Those residues are
as follows from the last chapter.

ResĤα×P1(Ω̃κ)∗ = uα,

ResDp×P1(Ω̃κ)∗ = Up + bκp + t
∂

∂t
⊗ aκp − p⊗

dt

t
,

Rest=0(Ω̃κ)∗ = −Rest=∞(Ω̃κ)∗ = −1h⊕C.

Now let us compute the eigenvalues of these residues. We look at the
residue map along the mirror Ĥα × P1, regard uα as an endomorphism of h
instead of h⊕ C at first. We immediately have

uα(α∨) = 2kαα
∨,

uα(p) = 0 for ∀p ⊥ α∨.
Then we have the following eigenvalues

uα((α∨, 0)) = 2kα(α∨, 0),

uα((p, 0)) = 0 for ∀p ⊥ α∨,

uα((0, λt
∂

∂t
)) = 0

if we regard uα as an endomorphism of h⊕ C.
Then we need to compute the eigenvalues of the residue maps of the con-

nection along the boundary divisor Dp×P1, which is much more involved. Let
us first look at an example. Then we shall have some feeling about how these
eigenvalues come up.

Example 3.7. We take type An and regard Up and bp as endomorphisms of
h at first as before. Here we still use the construction for root systems from
Bourbaki. Let root system R of type An sit inside a Euclidean space Rn+1
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and denote its orthonormal basis by e1, e2, · · · , en+1, so its positive roots are
all of the form ei− ej for 1 ≤ i < j ≤ n+ 1. Its dual root system R∨ is also of
type An and we denote the dual orthonormal basis by ε1, ε2, · · · , εn+1. Then
its positive coroots are all of the form εi− εj for 1 ≤ i < j ≤ n+ 1 and simple
coroots are of the form of εi − εi+1 for i = 1, 2, · · · , n.

Let p = $∨m := n+1−m
n+1 (ε1 + · · ·+ εm)− m

n+1(εm+1 + · · ·+ εn+1). We know

that all the positive roots α of R such that α(p) 6= 0 are of the form ei − ej
for 1 ≤ i ≤ m, m+ 1 ≤ j ≤ n+ 1 and in fact α(p) = 1 for all these α’s. Write

σ0 =
∑
α∈R+

|α(p)|(α∨ ⊗ α)

=
∑

1≤i≤m
m+1≤j≤n+1

(εi − εj)⊗ (ei − ej),

we then have

σ0(εs) =


∑

m+1≤j≤n+1

(εs − εj) for 1 ≤ s ≤ m

∑
1≤i≤m

−(εi − εs) for m+ 1 ≤ s ≤ n+ 1.

After a straightforward computation, we have
σ0(εs − εt) = (n+ 1−m)(εs − εt) for 1 ≤ s < t ≤ m
σ0(p) = (n+ 1)p

σ0(εs − εt) = m(εs − εt) for m+ 1 ≤ s < t ≤ n+ 1.

Since Up = −1
4

∑
α∈R |α(p)|k(α∨ ⊗ α) = −1

2kσ0, then the above tells us that
Up(α

∨
i ) = −1

2
(n+ 1−m)kα∨i for 1 ≤ i ≤ m− 1

Up(p) = −1

2
(n+ 1)kp

Up(α
∨
i ) = −1

2
mkα∨i for m+ 1 ≤ i ≤ n.

Since bp = 1
2k
′∑

α>0 α(p)(α′ ⊗ α) where α′ = εi + εj − 2
n+1(ε1 + · · · + εn+1),

the computation for bp is similar to the situation of Up and hence we have
bp(α

∨
i ) =

1

2
(n+ 1−m)k′α∨i for 1 ≤ i ≤ m− 1

bp(p) =
1

2
(n+ 1− 2m)k′p

bp(α
∨
i ) = −1

2
mk′α∨i for m+ 1 ≤ i ≤ n.
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If we write σ = ResDp×P1(Ω̃κ)∗ = Up + bp + t ∂∂t ⊗ ap − p ⊗
dt
t , regard Up and

bp as endomorphisms of h⊕ C, we then have the following eigenvalues after a
little bit more effort

σ((α∨i , 0)) = −1

2
(n+ 1−m)(k − k′)(α∨i , 0) for 1 ≤ i ≤ m− 1

σ((p,−1

2
m(k + k′)t

∂

∂t
)) = −1

2
(n+ 1−m)(k − k′)(p,−1

2
m(k + k′)t

∂

∂t
)

σ((p,−1

2
(n+ 1−m)(k − k′)t ∂

∂t
)) = −1

2
m(k + k′)(p,−1

2
(n+ 1−m)(k − k′)t ∂

∂t
)

σ((α∨i , 0)) = −1

2
m(k + k′)(α∨i , 0) for m+ 1 ≤ i ≤ n.

From this example, we notice that the eigenvalue of Up(+bp) on the space
Cp is the sum of the two eigenvalues on the spaces h1 = span{α∨1 , · · · , α∨m−1}
and h2 = span{α∨m+1, · · · , α∨n} respectively. And the product of the two eigen-
values is a(p, p). In fact, this holds for all the root systems. In the end, σ has
two eigenvalues on the space h⊕ C.

Theorem 3.8. Let σ = ResDp×P1(Ω̃κ)∗ = Up + bp + t ∂∂t ⊗ ap − p ⊗
dt
t , then

σ has at most two eigenvalues on the space h ⊕ C with multiplicites m and
n+ 1−m respectively. In fact, these two eigenvalues satisfy such a quadratic
equation λ2−ϕλ+a(p, p) = 0 where ϕ is the eigenvalue of Up(+bp) (if regarded
as an endomorphism of h) on Cp.

Proof. For type An, from above example, the Theorem holds.
For other types, bp = 0, suppose p = $∨m, we have a decomposition of h:

h = Cp⊕
∑
i

hi

where hi is just the space spanned by the irreducible root subsystem after
deleting the m-th node from the original root system R. These subspaces
have the corresponding Weyl groups, denoted by Wi respectively. In fact, Up
is a Wi-invariant endomorphism in hi, so Up is just a scalar action in hi by
Schur’s lemma. We write Up(v) = λiv if v ∈ hi and Up(p) = ϕ1p.

We check the square of σ, we have

σ2 = U2
p − p⊗ ap − Up(p)⊗

dt

t
+ t

∂

∂t
⊗ ap(Up)− a(p, p)t

∂

∂t
⊗ dt

t
.

From the computation above and below, we find that for all the root systems,
we have (at most) two eigenvalues on the space perpendicular to p whose sum
is ϕ1 and product a(p, p), i.e.,

U2
p (q)− ϕ1Up(q) + a(p, p)q = 0 for ∀q ∈ p⊥
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Then we can easily check that

σ2 − ϕ1σ + a(p, p) = 0.

The multiplicities follow from the decomposition of the root system. �

Remark 3.9. The value m and n + 1 −m for the multiplicities in the above
theorem is true except for an extremal node of Dn and some nodes of En,
which you can see from below. In fact, we only need to bear in mind that the
multiplicities follow from the decomposition of the root system in nature.

The computation for all the other types are similar, we just list the results
over here.

For type Bn, corresponding to p = ε1 + · · ·+ εm for 1 ≤ m ≤ n, we have



σ((α∨i , 0)) = −((n− 2)k + k′)(α∨i , 0) for 1 ≤ i ≤ m− 1

σ((p,−mkt ∂
∂t

)) = −((n− 2)k + k′)(p,−mkt ∂
∂t

)

σ((p,−((n− 2)k + k′)t
∂

∂t
)) = −mk(p,−((n− 2)k + k′)t

∂

∂t
)

σ((α∨i , 0)) = −mk(α∨i , 0) for m+ 1 ≤ i ≤ n.

For type Cn, corresponding to p = ε1 + · · ·+ εm for 1 ≤ m < n, we have



σ((α∨i , 0)) = −((n− 2)k + 2k′)(α∨i , 0) for 1 ≤ i ≤ m− 1

σ((p,−mkt ∂
∂t

)) = −((n− 2)k + 2k′)(p,−mkt ∂
∂t

)

σ((p,−((n− 2)k + 2k′)t
∂

∂t
)) = −mk(p,−((n− 2)k + 2k′)t

∂

∂t
)

σ((α∨i , 0)) = −mk(α∨i , 0) for m+ 1 ≤ i ≤ n;

and corresponding to p = 1
2(ε1 + · · ·+ εn), we have


σ((α∨i , 0)) = −1

2
((n− 2)k + 2k′)(α∨i , 0) for 1 ≤ i ≤ n− 1

σ((p,−1

2
nkt

∂

∂t
)) = −1

2
((n− 2)k + 2k′)(p,−1

2
nkt

∂

∂t
)

σ((p,−1

2
((n− 2)k + 2k′)t

∂

∂t
)) = −1

2
nk(p,−1

2
((n− 2)k + 2k′)t

∂

∂t
).
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For type Dn, corresponding to p = ε1 + · · · + εm for 1 ≤ m ≤ n − 2, we
have 

σ((α∨i , 0)) = −(n− 2)k(α∨i , 0) for 1 ≤ i ≤ m− 1

σ((p,−mkt ∂
∂t

)) = −(n− 2)k(p,−mkt ∂
∂t

)

σ((p,−(n− 2)kt
∂

∂t
)) = −mk(p,−(n− 2)kt

∂

∂t
)

σ((α∨i , 0)) = −mk(α∨i , 0) for m+ 1 ≤ i ≤ n;

and corresponding to p = 1
2(ε1 + · · ·+εn−1−εn) or p = 1

2(ε1 + · · ·+εn−1 +εn),
we have 

σ((α∨i , 0)) = −1

2
(n− 2)k(α∨i , 0) for ∀α∨i ⊥ p

σ((p,−1

2
nkt

∂

∂t
)) = −1

2
(n− 2)k(p,−1

2
nkt

∂

∂t
)

σ((p,−1

2
(n− 2)kt

∂

∂t
)) = −1

2
nk(p,−1

2
(n− 2)kt

∂

∂t
).

For type F4, the eigenvalues are {−(m + 1)(k + k′),−m(2k + k′)} corre-
sponding to p = $∨m for m = 1, 2, 3 and {−2(k+ k′),−2(2k+ k′)} for p = $∨4 .

For type G2, the eigenvalues are {−(k + 3k′),−3
2(k + k′)} and {−1

2(k +
3k′),−(k + k′)} for p = $∨1 and $∨2 respectively.

For type En, the computation becomes more complicated since the con-
struction for their fundamental coweights is somehow irregular one by one.
Then in order to compute their eigenvalues, we have the following observa-
tion: the collection of α ∈ R with α(p) > 0 is a union of Wp-orbits. So if we
put for any Wp-orbit of roots that are positive on p as follows:

EO :=
1

2|Wp|
∑
w∈Wp

wα∨ ⊗ wα =
1

2|O|
∑
α′∈O

α′∨ ⊗ α′

where α is a member of O, then Up is a linear combination of such EO’s.
We denote the orthogonal complement of p by h̄. Since EO is a Wp-

invariant endomorphism in each summand hi, EO is a scalar action on Cp and
each summand hi by Schur’s lemma. These eigenvalues only depend on the
Wp-orbit O of α and so we denote them by λp,O and λi,O. First we notice that

the trace of EO is equal to 1
2α(α∨) = 1 and we shall show that the traces of

EO on these eigenspaces are distributed in a simple manner. First we observe
that

a(EO(x), y) =
a(α∨, α∨)

4|Wp|
∑
w∈Wp

α(wx) · α(wy).
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When x = y = p the left hand side is a(p, p)λp,O and the right hand side

becomes 1
4a(α∨, α∨)α(p)2 = a(α∨, p)2/a(α∨, α∨) and so

λp,O =
a(α, p)2

a(p, p)a(α∨, α∨)
=
‖ πp(α∨) ‖2a
‖ α∨ ‖2a

,

where ‖ ‖a denotes the norm associated to a. This is just the cosine squared
of the angle between α∨ and πp(α

∨).
When x = y ∈ hi, the left hand side is a(x, x)λi,O. Now we only consider

the case for which R is a single W -orbit for simplicity. Then we have Ri :=
R ∩ h∗i is a Wp-orbit. We denote the Coxeter number of W (Ri) by hi. It is
known that |Ri| = hi dim hi and that

∑
β∈Ri β ⊗ β is a W (Ri)-invariant form

on hi which gives each coroot the squared length 4hi. So if we take in the
above formula x = y a coroot of Ri, then

λi,O =
1

4|Wp|
∑
w∈Wp

α(wβ∨)2 =
1

4|Ri|
∑
β∈Ri

α(β∨)2

=
1

4|Ri|
∑
β∈Ri

β(α∨)2 =
1

4|Ri|
· 4hi
‖ πhi(α∨) ‖2a
‖ coroot ‖2a

=
‖ πhi(α∨) ‖2a

dim hi ‖ coroot ‖2a
.

We can see that the trace of EO on hi (= λi,O dim hi) is the cosine squared of
the angle between α∨ and πhi(α

∨).
Then we look at these orbits. Let α̃ be the highest root of R relative

to the root basis B and put np := α̃(p). By inspection one finds that for
c = 1, 2, · · · , np the set of α ∈ R with α(p) = c make up a single Wp-orbit
O(c) and that the orthogonal projection O(c)i of O(c) in h∗i is either {0} or
the orbit of a fundamental weight of Ri. So the Wp-orbit O(c) projects in h̄
bijectively onto

∏
iO(c)i. We also see that there is a unique α(c) ∈ O(c) such

that α(c) defines a fundamental coweight in hi relative to Bi := B ∩Ri or 0.
Therefore, our Up is proportional to

E :=

np∑
c=1

c|O(c)|EO(c).

Example 3.10. We do a branch point of type E7. Let p be chosen corre-
sponding to α4:

E7
α1 α3 α4 α5 α6 α7

α2

The decomposition of B − α4 into irreducible root basis is B1 := {α1, α3},
B2 := {α2}, and B3 := {α5, α6, α7} (of type A2, A1 and A3 respectively).
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The highest root is α̃ = α1 +2α2 +3α3 +4α4 +3α5 +2α6 +α7. Since α̃(p) = 4,
we have 4 corresponding Wp-orbits and each of them is represented by

α(1) := α1 + α2 + α3 + α4 + α5 + α6 + α7,

α(2) := α1 + α2 + 2α3 + 2α4 + 2α5 + α6 + α7,

α(3) := α1 + α2 + 2α3 + 3α4 + 2α5 + α6 + α7,

α(4) := α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7.

For the case c = 1, observe that α(1) defines the coweight sum p1(B1) +
p2(B2) + p7(B3) in h̄. We have

‖ πp(α(1)) ‖2

‖ α(1) ‖2
=

1

24
,
‖ p1(B1) ‖2

‖ α(1) ‖2
=

1

3
,
‖ p2(B2) ‖2

‖ α(1) ‖2
=

1

4
,
‖ p7(B3) ‖2

‖ α(1) ‖2
=

3

8

(summing to 1). So the eigenvalues of EO(1) are ( 1
24 ,

1
6 ,

1
4 ,

1
8). It’s easy to see

that |O(1)| = 2 · 3 · 4 = 24 and so |O(1)|EO(1) has eigenvalues (1, 4, 6, 3).
For the case c = 2, observe that α(2) defines the coweight sum p3(B1) +

p6(B3) in h̄. We have

‖ πp(α(2)) ‖2

‖ α(2) ‖2
=

1

6
,
‖ p3(B1) ‖2

‖ α(2) ‖2
=

1

3
,
‖ p6(B3) ‖2

‖ α(2) ‖2
=

1

2

(summing to 1). So the eigenvalues of EO(2) are (1
6 ,

1
6 , 0,

1
6). It’s easy to see

that |O(2)| = 3 · 6 = 18 and so 2|O(2)|EO(2) has eigenvalues (6, 6, 0, 6).
For the case c = 3, observe that α(3) defines the coweight sum p2(B2) +

p7(B3) in h̄. We have

‖ πp(α(3)) ‖2

‖ α(3) ‖2
=

3

8
,
‖ p2(B2) ‖2

‖ α(3) ‖2
=

1

4
,
‖ p7(B3) ‖2

‖ α(3) ‖2
=

3

8

(summing to 1). So the eigenvalues of EO(3) are (3
8 , 0,

1
4 ,

1
8). It’s easy to see

that |O(3)| = 2 · 4 = 8 and so 3|O(3)|EO(3) has eigenvalues (9, 0, 6, 3).
For the case c = 4, observe that α(4) defines the coweight sum p1(B1) in

h̄. We have

‖ πp(α(4)) ‖2

‖ α(4) ‖2
=

2

3
,
‖ p1(B1) ‖2

‖ α(4) ‖2
=

1

3

(summing to 1). So the eigenvalues of EO(4) are (2
3 ,

1
6 , 0, 0). It’s easy to see

that |O(4)| = 3 and so 4|O(4)|EO(4) has eigenvalues (8, 2, 0, 0).

We conclude that Up = −kE = −k
∑4

c=1 c|O(c)|EO(c) has as eigenvalues

the system (−24k,−12k,−12k,−12k). In particular, a(p, p) = 144k2.

Using this way, we have the eigenvalues for type En as follows:
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E6

p eigenvalues multiplicities
$∨1 ,$∨6 (−4k,−2k) (1, 6)
$∨2 (−4k,−3k) (1, 6)

$∨3 ,$∨5 (−5k,−4k) (2, 5)
$∨4 −6k 7

E7

p eigenvalues multiplicities
$∨1 (−6k,−4k) (1, 7)
$∨2 (−7k,−6k) (1, 7)
$∨3 (−9k,−8k) (2, 6)
$∨4 −12k 8
$∨5 (−9k,−10k) (5, 3)
$∨6 (−6k,−8k) (6, 2)
$∨7 (−3k,−6k) (7, 1)

E8

p eigenvalues multiplicities
$∨1 (−12k,−10k) (1, 8)
$∨2 (−16k,−15k) (1, 8)
$∨3 (−21k,−20k) (2, 7)
$∨4 −30k 9
$∨5 (−24k,−25k) (5, 4)
$∨6 (−18k,−20k) (6, 3)
$∨7 (−12k,−15k) (7, 2)
$∨8 (−6k,−10k) (8, 1)

These computation show that there are at most 2 eigenvalues along the
toric divisor for any root system.

Remark 3.11. We notice from the above computation that if we extend the
bilinear symmetric form a on h to the space h⊕ C by the way such that

a(q, t
∂

∂t
) = 0 for ∀q ∈ h

a(t
∂

∂t
, t
∂

∂t
) = −1,

the two eigenvectors in the space which is spanned by the fundamental coweight
p and t ∂∂t are perpendicular to each other with respect to this a. This also
gives rise to a Frobenius algebra on H◦ × C× which will be investigated in
detail in Chapter 4.
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We also have the dilatation field as follows.

Theorem 3.12. Suppose an affine structure on H◦ × C× is given by the
torsion free flat connection ∇̃ defined by (2.2), then the vector field t ∂∂t is in
fact a dilatation field on H◦ × C× with factor λ = 1.

Proof. It’s a straightforward computation. Suppose a local vector field
ṽ on H◦ ×C× is of the form ṽ := v+ µt ∂∂t where v is a vector field on H◦, we
have

∇̃ṽ(t
∂

∂t
) = ∇̃0

v+µt ∂
∂t

(t
∂

∂t
)− Ω̃∗

v+µt ∂
∂t

(t
∂

∂t
)

= 0− 0− 0− 0 +
∑
αi∈B

αi(v)∂pi + µt
∂

∂t

= ṽ

since t ∂∂t is flat with respect to ∇̃0. �

We then could decompose the vector bundle V (with its flat connection)
naturally according to these eigenspaces.

Lemma 3.13. The vector bundle V (with its flat connection) decomposes
naturally according to the images in C/Z of the eigenvalues of the residue
endomorphism: V =

⊕
ζ∈C× V

ζ , where V ζ has a residue endomorphism whose

eigenvalue ν are such that exp(2π
√
−1ν) = ζ.

And suppose D is a hypersurface in M . Then the affine structure on
M −D has a degeneration along D◦ which could be decomposed naturally as
above with logarithmic exponent ν − 1 in each corresponding eigenspace.

Proof. [6]. �

3.3. Reflection representation

We recall that R ⊂ a∗ is a reduced irreducible finite root system where
a∗ is a Euclidean vector space of dimension n. Let a = Hom(a∗,R) be the
dual Euclidean vector space, and let R∨ in a be the dual root system and
denote the corresponding coroot lattice by Q∨ = ZR∨. We then have the
weight lattice P = Hom(Q∨,Z) of R in a∗. The torus having P as (rational)
character lattice, H ′ = Hom(P,C×) is often called the simply connected torus.
Put H ′◦ = H ′ − ∪α∈R+H

′
α where H ′α = {h ∈ H ′ | eα(h) = 1}. Let

C = {h ∈ H ′ | eα(h) = 1 for all α ∈ R} ∼= P∨/Q∨,

so the adjoint torus H is just H ′/C. Then as discussed in Theorem 2.8 the
special differential equation system (2.3) associated with the root system R
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gives a W ′-invariant projective structure on H ′◦ where W ′ = W o C is the
extended Weyl group.

In the example of the root system of type A1 this equation boils down to
(take u = v = α∨/2, k′ = 0 with variable z = eα(h) and derivative θ = z∂)

(θ2 + k
1 + z−1

1− z−1
θ +

1

4
k2)f(z) = 0.

We shall now construct the reflection representation of the affine Artin
group Art(M) with generators σ0, · · ·σn and braid relations

σiσjσi · · ·︸ ︷︷ ︸
mij

= σjσiσj · · ·︸ ︷︷ ︸
mij

for all i 6= j where both members are words comprising mij letters. These
results can be traced back to Coxeter and Kilmoyer, see e.g. [8] and [9].

First we need to investigate what the two complex reflections look like if
they satisfy a braid relation.

Proposition 3.14. Let s1, s2 ∈ GL2(C) be the complex reflections as follows.(
−q1 d1

0 1

)
,

(
1 0
d2 −q2

)
where q1, q2 ∈ C×.

If m = 2r + 1 (r ≥ 1) is odd, then s1 and s2 satisfy the braid relation of
length m

(s1s2)rs1 = (s2s1)rs2

if and only if

q1 = q2(= q say), d1d2 = (2 + ξ + ξ−1)q with ξm = 1, ξ 6= 1.

If m = 2r (r ≥ 1) is even, then s1 and s2 satisfy the braid relation of
length m

(s1s2)r = (s2s1)r

if and only if
d1 = d2 = 0 for m = 2;

and

d1d2 = q1 + q2 + (ξ + ξ−1)q
1
2
1 q

1
2
2 with ξm = 1, ξ2 6= 1 for m ≥ 4.

Proof. It is obvious that det(s1) = −q1 and det(s2) = −q2.
Let us do the odd case first. Suppose m = 2r+1 is odd. Put T1 = (s1s2)rs1

and T2 = (s2s1)rs2. Suppose the braid relation holds, i.e., T1 = T2 (=T say).
It is clear that d1d2 6= 0, for otherwise it contradicts the braid relation. So
the group generated by s1 and s2 acts irreducibly on C2. We also have that
Ts1 = s2T and Ts2 = s1T which follows that s1 and s2 are conjugated, hence
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we have q1 = q2 (=q say). Moreover, T 2 = (s1s2)m = (s2s1)m commutes
with both s1 and s2, and hence is a scalar matrix by Schur’s lemma, i.e.,
T 2 − qmI = 0. But T is not a scalar matrix, so it has eigenvalues ±λ with
λ2 = qm since det(T ) = −qm. Hence s1s2 has eigenvalues ξq, ξ−1q with
ξm = 1, ξ 6= 1. Since we have tr(s1s2) = d1d2 − q1 − q2, we have also that
d1d2 = (2 + ξ + ξ−1)q with ξm = 1, ξ 6= 1.

Conversely, suppose q1 = q2 (= q say), d1d2 = (2 + ξ + ξ−1)q with ξm =
1.ξ 6= 1. Then det(s1s2) = det(s2s1) = q2 and tr(s1s2) = ξq+ξ−1q, so s1s2 and
s2s1 have eigenvalues ξq, ξ−1q with ξm = 1, ξ 6= 1. Hence T1T2 = T2T1 = qmI.

We notice that the matrix

(
0 d1

d2 0

)
conjugates s1 to s2, and therefore also

T1 to T2. If T1 and T2 have eigenvalues λ1, λ2, then λ1λ2 = det(T1) = −qm.
We also have

λ1 + λ2 = tr(T1) = tr(T2) = qm(λ−1
1 + λ−1

2 ) = −(λ1 + λ2)

so λ1 = −λ2. In turn this implies T 2
1 = qmI and hence the braid relation

T1 = T2 follows.
Now suppose m = 2r (r ≥ 1) is even. In case m = 2 it is direct to verify

that the relation s1s2 = s2s1 holds if and only if d1 = d2 = 0. Therefore
assume r ≥ 2 now. Then the group generated by s1 and s2 acts irreducibly
on C2. Put T1 = (s1s2)r and T2 = (s2s1)r. The braid relation T1 = T2

(= T say) implies that T commutes with s1 and s2, and so T is a scalar
matrix, λI say, with λ2 = (q1q2)r. Hence the matrix s1s2 has eigenvalues

ξ±1q
1
2
1 q

1
2
2 with ξm = 1, ξ2 6= 1. The trace computation of s1s2 shows that

d1d2 = q1 + q2 + (ξ + ξ−1)q
1
2
1 q

1
2
2 .

Conversely, suppose the above equality holds. Then the eigenvalues of s1s2

and s2s1 are ξ±1q
1
2
1 q

1
2
2 , and T1 = T2 = ξr(q

1
2
1 q

1
2
2 )rI. �

In fact, finite complex reflection groups are already classified by Shephard
and Todd in 1954 [32].

Let M = (mij)0≤i,j≤n be the affine Coxeter matrix associated with the

extended Dynkin diagram of the affine root system R̃ associated with R. If
α1, · · ·αn are the simple roots in R+, then a0 = −α̃, a1 = α1, · · · , an = αn are
the simple roots in R̃+ with α̃ the highest root in R+.

Recall that K is the space of multiplicity parameters for R defined by

κ = (kα)α∈R ∈ CR

where κ is invariant on W -orbits in R. It is clear that K is isomorphic to Cr
as a C-vector space if r is the number of W -orbits in R (i.e., r = 1 or 2). Like
in Chapter 2, we shall still sometimes write ki instead of kαi if {α1, · · · , αn}
is a basis of simple roots in R+. And sometimes we also write k for k1 and
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k′ for kn if αn /∈ Wα1 when no confusion can arise. But note that k′ has a
different meaning for type An, which can be seen from Remark 2.5.

For R of any type other than An, let q
1
2
i and sij = sji for 0 ≤ i 6= j ≤ n

be indeterminants with additional relations
sij = 0 if mij = 2

q
1
2
i = q

1
2
j and sij = 1 if mij = 3

s2
ij = q

1
2
i q
− 1

2
j + q

− 1
2

i q
1
2
j + 2 cos(

2π

mij
) if mij ≥ 4

and let A be the ring Z[q
1
2
i , q

− 1
2

i , sij | 0 ≤ i 6= j ≤ n]. Let ¯ be the involution

of A defined by q̄
1
2
i = q

− 1
2

i and s̄ij = sij . Let K ′ be the space of restricted
multiplicity parameters defined by

K ′ = {κ = (kαi) ∈ K | ki ∈ (−1

2
,
1

2
), |ki − kj | < 1− 2

mij
if mij ≥ 4 and even}.

For z ∈ C \ (−∞, 0], let z
1
2 denote the branch of the square root with 1

1
2 = 1.

If κ ∈ K ′ is a restricted multiplicity parameter on R then the substitutions

q
1
2
j = exp(−π

√
−1kj), sij = (2 cosπ(ki − kj) + 2 cos(

2π

mij
))

1
2

for all j and i 6= j with mij ≥ 3 induce a homomorphism A → C called
specialization of A at κ ∈ K ′.

The root system R of type An is somewhat peculiar due to the fact that
the extended Dynkin diagram is a cycle rather than a tree. For R of type An,
we take

s0,1 = · · · = sn−1,n = sn,0 = q′−
1
2 , s1,0 = · · · = sn,n−1 = s0,n = q′

1
2

and put q̄
1
2 = q−

1
2 , q̄′

1
2 = q′−

1
2 (with q

1
2 = q

1
2
i for i = 0, · · · , n). Let the

restricted parameter space K ′ be defined by

K ′ = {(k, k′) | k ∈ (−1

2
,
1

2
), k′ ∈ (−1

2
,
1

2
)}

and let the specialization of A at κ ∈ K ′ be given by the substitutions

q
1
2 = exp(−π

√
−1k), q′

1
2 = exp(−π

√
−1k′).

Remark 3.15. In all cases the involution ¯ of A becomes complex conjugation
under specialization.



60 Hyperbolic structures

Now let ei(i = 0, · · · , n) be the standard basis of An+1 and define a Her-
mitian form on An+1 with Gram matrix of the standard basis given by

hij =

{
q

1
2
i + q

− 1
2

i if i = j

− sij if i 6= j
(3.1)

Indeed we have h† = h with h† = h̄t. The unitary reflection Tj of An+1 having
ej as eigenvector with eigenvalue −qj satisfies

Tj(ei) = ei − q
1
2
i hijej for all i.

From this identity we can see that Tj also satisfies the quadratic relation

(Tj − 1)(Tj + qj) = 0

as well as the braid relation

TiTjTi · · ·︸ ︷︷ ︸
mij

= TjTiTj · · ·︸ ︷︷ ︸
mij

for all i 6= j. Therefore there exists a unique (unitary) representation

ρ : Art(M)→ GLn+1(A)

σj 7→ Tj
(3.2)

and this is the reflection representation of Art(M).
The special hypergeometric system (2.3) in Theorem 2.8 is defined on the

complex manifold H◦ and is invariant for W . Therefore it lives on the complex
orbifold W\H◦ as well.

This in turn implies that the monodromy of the system (2.3) is a homo-
morphism:

ρ′ : πorb
1 (W\H◦,Wp0)→ GLn+1(C) (3.3)

with p0 ∈ D+ ⊂ H◦ a fixed base point where D+ is the fundamental alcove of
H◦.

Remark 3.16. There is a natural isomorphism using Brieskorn’s theorem [3]

π1(W\H ′◦,W ′p0) ∼= Art(M)

and then there is a corresponding isomorphism

πorb
1 (W\H◦,Wp0) ∼= Art(M) o C

with C viewed as group of diagram automorphisms of the extended Dynkin
diagram of R and hence acting naturally on the generators of Art(M) . The
reflection representation (3.2) can be extended in a natural way to a represen-
tation of Art(M) o C. We write Art′(M) = Art(M) o C. If Aut(M) denotes
the full group of diagram automorphisms of the extended Dynkin diagram,
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then the reflection representation (3.2) extends in a natural way to a repre-
sentation of Art(M)oAut(M) with the exception of type An. This extension
for type An is only possible when q′ = 1.

Then we identify the two representations as follows.

Theorem 3.17. The monodromy representation of the special hypergeometric
system given in Theorem 2.8 for a parameter κ ∈ K ′ is equal to the special-
ization at κ ∈ K ′ of the reflection representation of the affine Artin group. In
particular for κ ∈ K ′ the local solution space at p0 ∈ D+ admits a Hermitian
form h(κ) invariant under monodromy.

Proof. From the computation on the eigenvalues of the residue endo-
morphisms of the connection along the mirrors, the special hypergeometric
system has exponents along the wall of D+ corresponding to the simple root
αj equal to 1 and 1 − 2kj with multiplicities n and 1 respectively. Therefore
the monodromy ρ′(gj) of the special hypergeometric system corresponding to
a half turn around that wall is a complex reflection with a quadratic relation

(ρ′(gj)− 1)(ρ′(gj) + qj) = 0

with qj = exp(−2π
√
−1kj), which coincide with the relation for the reflection

representation of Art(M) when the κ is the same. Moreover, for κ ∈ K ′

being generic, the monodromy is easily seen to be irreducible. The result
hence follows if for type An, k′ and q′ are related by the specialization q′ =
exp(−2π

√
−1k′). �

Theorem 3.18. The specialization det(h(κ)) at κ ∈ K ′ is given for type
ABCFG by

det(h(κ)) = −4 sin(πx) sin(πy), (3.4)

with (x, y) = ((n + 1)(k + k′)/2, (n + 1)(k − k′)/2), ((n − 2)k + k′, 2k), ((n −
2)k + 2k′, k), (k + k′, 2k + k′), ((k + 3k′)/2, (k + k′)/2) respectively,

and for type Dn and En by

det(h(κ)) = 2n+1
n∏
j=0

(cos(πk)− cos(πm̃j/h̃)) (3.5)

with h̃ and {m̃j} given by

Dn : h̃ = 2(n− 2), {m̃j} = {0, 2, · · · , 2(n− 2), (n− 2), (n− 2)}

E6 : h̃ = 6, {m̃j} = {0, 2, 2, 3, 4, 4, 6}

E7 : h̃ = 12, {m̃j} = {0, 3, 4, 6, 6, 8, 9, 12}

E8 : h̃ = 30, {m̃j} = {0, 6, 10, 12, 15, 18, 20, 24, 30}
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Proof. The first identity is obtained directly from the classification the-
ory of connected extended Dynkin diagrams, which is explained in detail in
Appendix A. And the second identity appears as Exercise 4 of Ch. V, § 6 in
Bourbaki [2]. �

Corollary 3.19. For R of type ABCFG put

K ′hyp = {κ ∈ K ′ | 0 < x < 1, 0 < y < 1}
and for type DE put

K ′hyp = (0,
1

n− 2
) and (0,

1

n− 3
)

respectively. Then the monodromy representation has an invariant Hermitian
form of Lorentz signature (n,1).

Proof. Observe that for k ∈
√
−1R×, k′ = 0 (for R of type A) and for

k = k′ ∈
√
−1R× (for R of other types), the form h(κ) is positive definite, and

for κ ∈ K ′hyp, one has det(h(κ)) < 0. Since on the line k′ = 0 (type A) and

k = k′ (other types) the function det(h(κ)) has a double zero at the origin,
the result follows. �

3.4. The evaluation map

Recall that Dκ
u,v denotes the second order differential operator in (2.3):

∂u∂v +
1

2

∑
α>0

kαα(u)α(v)
eα + 1

eα − 1
∂α∨ + ∂bκ(u,v) + aκ(u, v).

Take p ∈ H◦ and κ ∈ K. Consider Dκ
u,v as an operator on the stalk of

holomorphic germs Oκ,p. Then the solutions form a free Oκ module of rank
n + 1. Hence the local solutions of Dκ

u,vf = 0 for ∀u, v ∈ h near p can be
considered as a vector bundle Fp over K. Any w ∈W induces an isomorphism
of vector bundle Fp and Fwp. Then we can identify all these vector bundles
induced by a regular W -orbit S. This yields a vector bundle FS over K of
rank n+1, the fiber of which is denoted by FS(κ). According to the preceding
section, we have the following representation ρ(κ) on the vector bundle FS(κ)
by specializing κ:

ρ : πorb
1 (W\H◦, S) ∼= Art′(M)→ End(FS).

Transposing ρ yields a following representation

ρ∗ : Art′(M)→ End(F∗S).

Let h∗(κ) be given as follows:

h∗(κ) = det(h(κ))(h(κ))−1 (3.6)
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We then have the dual Hermitian form h∗(κ) of h(κ) for the transpose ρ∗(κ)
if κ ∈ K ′ is real valued.

Lemma 3.20. The dual Hermitian form h∗(κ) of h(κ) given as above is a
nontrivial invariant Hermitian form for the transpose ρ∗(κ) if κ ∈ K ′ is real
valued. Moreover, if h(κ) is positive definite, then h∗(κ) is also positive defi-
nite; if h(κ) is parabolic, then h∗(κ) is positive semidefinite with n dimensional
kernel; and if h(κ) is hyperbolic, then h∗(κ) is of the signature (1, n).

Proof. It’s clear that h∗(κ) is a nontrivial invariant Hermitian form for
ρ∗(κ) since h(κ) is of rank at least n and then the matrix h∗(κ) is of rank at
least 1. In fact, h∗(κ) is just the minor matrix of h(κ) and we have h∗(κ)h(κ) =
det(h(κ))I, the statement easily follows. �

Since the differential operator Dκ
u,v defines an affine structure on H◦×C×,

then the locally affine-linear functions which are of the form c + tf by Lem-
ma 2.2 make up a local system AffH◦×C× of C-vector space in the structure
sheaf OH◦×C× . This local system is of rank n+ 2 and contains the constants
CH◦×C× . Then the quotient AffH◦×C×/CH◦×C× is a local system whose un-
derlying vector bundle is the cotangent bundle of H◦ × C×. So there exists a
multivalued evaluation map given by

ev : K × ((W\H◦)× C×) 99K F∗S
such that ev(κ, p, t)(f) = tf(p), and a corresponding projective evaluation
map

Pev : K × (W\H◦) 99K P(F∗S).

In order to eliminate the multivaluedness of this map, let us denote by Ŵ\H◦
the universal Γ-covering space of W\H◦ with Γ = π1(W\H◦)/Ker(Pr ◦ρ) the
projective monodromy group. Here we write Pr : GL(FS(κ))� PGL(FS(κ))

for the natural map. In other words, Ŵ\H◦ is equal to Ker(Pr ◦ ρ)\(W̃\H◦)
with W̃\H◦ the universal covering of W\H◦. Then we have the commutative
diagram

Ŵ\H◦ P̂ ev−−−−→ P(F∗S(κ))y y
W\H◦ Pev−−−−→ Γ\P(F∗S(κ))

Note that Γ\P(F∗S) is an ill defined space unless the action of Γ on P(F∗S) is
properly discontinuous.

Recall that the Wronskian of Dκ
u,v is defined up to a scalar multiplication

as follows:

J := det(∂ξifj)0≤i,j≤n
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where ξ1, · · · , ξn ∈ h being an orthonormal basis and let f0, · · · , fn be a basis
of local solutions of Dκ

u,vf = 0.

Lemma 3.21. The Wronskian of Dκ
u,v is given by:

J =
∏
α>0

(eα/2 − e−α/2)−2kα .

Proof. First we compute

∂ξJ =∂ξ det


f0 ∂ξ1f0 · · · ∂ξnf0

f1 ∂ξ1f1 · · · ∂ξnf1
...

...
. . .

...
fn ∂ξ1fn · · · ∂ξnfn



= det


∂ξf0 ∂ξ1f0 · · · ∂ξnf0

∂ξf1 ∂ξ1f1 · · · ∂ξnf1
...

...
. . .

...
∂ξfn ∂ξ1fn · · · ∂ξnfn



+
∑
i

det


f0 · · · ∂ξ∂ξif0 · · · ∂ξnf0

f1 · · · ∂ξ∂ξif1 · · · ∂ξnf1
...

. . .
...

. . .
...

fn · · · ∂ξ∂ξifn · · · ∂ξnfn



=
∑
i

det


f0 · · · ∂ξ∂ξif0 · · · ∂ξnf0

f1 · · · ∂ξ∂ξif1 · · · ∂ξnf1
...

. . .
...

. . .
...

fn · · · ∂ξ∂ξifn · · · ∂ξnfn


while because of (2.3), for type An, we have

∂ξ∂ξifj

=− 1

2

∑
α>0

kα
eα + 1

eα − 1
α(ξ)α(ξi)∂α∨fj − ∂bκ(ξ,ξi)fj − a

κ(ξ, ξi)fj

=− 1

2

∑
α>0

kα
eα + 1

eα − 1
α(ξ)α(ξi)∂α∨fj −

1

2
k′
∑
α>0

α(ξ)α(ξi)∂α′fj − aκ(ξ, ξi)fj

=− 1

2

∑
α>0

∑
i

kα
eα + 1

eα − 1
α(ξ)α(ξi)(α

∨, ξi)∂ξifj

− 1

2
k′
∑
α>0

∑
i

α(ξ)α(ξi)(α
′, ξi)∂ξifj − a

κ(ξ, ξi)fj ;
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and then

∂ξJ

=
∑
i

(−1

2

∑
α>0

kα
eα + 1

eα − 1
α(ξ)α(ξi)(α

∨, ξi))J +
∑
i

(−1

2
k′
∑
α>0

α(ξ)α(ξi)(α
′, ξi))J

=−
∑
α>0

kα
eα + 1

eα − 1
α(ξ)J.

For other types, we have

∂ξ∂ξifj = −1

2

∑
α>0

kα
eα + 1

eα − 1
α(ξ)α(ξi)∂α∨fj − aκ(ξ, ξi)fj

= −1

2

∑
α>0

kα
eα + 1

eα − 1
α(ξ)α(ξi)(α

∨, ξi)∂ξifj − a
κ(ξ, ξi)fj ;

and then

∂ξJ =
∑
i

(−1

2

∑
α>0

kα
eα + 1

eα − 1
α(ξ)α(ξi)(α

∨, ξi))J

= −
∑
α>0

kα
eα + 1

eα − 1
α(ξ)J.

Then we verify that the proposed product formula for J satisfies all these
formulas.

∂ξJ =
∑
α>0

(
− 2kα(eα/2 − e−α/2)−2kα−1 · (eα/2 · α(ξ)

2
+ e−α/2 · α(ξ)

2
)

·
∏
β 6=α
β>0

(eβ/2 − e−β/2)−2kβ
)

=−
∑
α>0

(
kαα(ξ)

eα + 1

eα − 1

∏
β>0

(eβ/2 − e−β/2)−2kβ
)

=−
∑
α>0

kαα(ξ)
eα + 1

eα − 1
J

The lemma follows. �

A basis f0, · · · , fn of FS(κ) identifies P(F∗S(κ)) with Pn(C) by the following
way

Pev(κ) : Ŵ\H◦ → Pn(C)

q 7→ [f0(q) : f1(q) : · · · : fn(q)]
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Since an irreducible component of Ĥ −H◦ is either the closure Ĥα in Ĥ
of some Hα or is equal to some Dp with p ∈ Π. Let I ⊂ {1, 2, · · · , n} have m
elements. The subset

{h ∈ Ĥ | eαi(h) = c if and only if i ∈ I}

is called a (n −m)-dimensional face where c takes one value of {0, 1,∞} for
each i. In particular, it is a type i reflection hypertorus if I = {i} and c = 1
and a type i boundary divisor if I = {i} and c = 0 or ∞. The union of
all (n − 1)-dimensional facets is called the set of subregular points. Then we
analyze the local situation near a subregular point x. This will be used in
proving the hyperbolic structure of H◦.

Lemma 3.22. For any κ ∈ K the map ev(κ) satisfies the following properties:

(1) It maps locally biholomorphically into F∗S(κ).
(2) Continuing ev(κ) along a loop σ ∈ Art′(M) yields ρ∗(κ, σ)ev(κ).

Proof. That evaluation map ev(κ) is locally biholomorphic everywhere
since (say f0 6= 0) the Wronskian

J = fn+1
0 det(∂ξi(fj/f0))0≤i,j≤n

is precisely the Jacobian of the projective evaluation mapping in the affine
chart {f0 6= 0}.

Statement 2 is clear since F∗S(κ) is a fiber living on the base orbifold
W\H◦. �

Lemma 3.23. We can pick local coordinates y1, y2, · · · , yn+1 and certain lin-
ear coordinates of F∗S(κ) near x such that the evaluation map has the following
form:

ev(κ) = (y
1
2
−kα

1 , y2, · · · , yn+1) if x ∈ H◦α

ev(κ) = (y
1−k′p
1 , · · · , y1−k′p

m , y
1−k′′p
m+1 , · · · , y

1−k′′p
n+1 ) if x ∈ D◦p.

Proof. From the computation in Section 3.2, we know that the eigenval-
ues of the residue map of the connection ∇̃ along the mirror are 2kα and 0
with multiplicities 1 and n respectively while a half turn corresponds to a loop
in W\H◦.

Similarly, the eigenvalues of the residue map of the connection ∇̃ along
the boundary divisor are k′p and k′′p , with multiplicities m and n + 1 − m
respectively say.

Then the evaluation map could be written as in the statement with respect
to these coordinates. �
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3.5. Hyperbolic complex ball

Then we finally arrive at the main result of this section. Inspired by the
idea of Section 3.8 in Couwenberg [5], we can show the following fact.

Theorem 3.24. For κ ∈ K ′hyp, the image of the projective evaluation map

P̂ ev : Ŵ\H◦ → Pn(C)

is contained in the ball Bn(C).

Proof. Let e0, e1, · · · , en be the standard basis of FS , denote their dual
sections in F∗S by e∗0, e

∗
1, · · · , e∗n, then through the equivalence of monodromy

representation and the reflection representation we can transfer the Hermitian
structure in space An+1 to the vector bundle F∗S over the restricted real valued
multiplicity function K ′ by defining h∗(e∗i , e

∗
j ) = h∗ij as in (3.6). To prove this

desired result, it suffices to show that

h∗(ev(κ, ·), ev(κ, ·)) > 0

on H◦ for hyperbolic κ, i.e., κ ∈ K ′hyp.
Using the action of the Weyl group W on the adjoint torus H which corre-

sponds to a complete Weyl Chamber decompostion Σ for the real vector space
P∨R = P∨ ⊗ R spanned by the coweight lattice P∨, a smooth full compactifi-

cation H → Ĥ added by a boundary divisor with normal crossings could be
realized. These boundary divisors are called the toric strata. Also we could
compactify C× by adding two points {0,∞} which actually corresponds to a
type A1 Weyl chamber decomposition.

Let D = ∪αHα and let

P1 × C× ι−−−−→ Ĥ × C×

pr1

y ypr1
P1 ι′−−−−→ Ĥ

be a commutative diagram such that ι′ is an embedding of a projective line
in Ĥ which intersects every mirror and every irreducible toric divisor only
in subregular points. In particular, the image ι′(C×) is not contained in any
reflection hypertorus or toric divisor. In fact, this desired projective line could
be realized as follows: as P∨ ∼= Zn, any p =

∑
i bipi gives rise to a homomor-

phism γp : C× → H which sends λ ∈ C× to (λb1 , λb2 , · · · , λbn) ∈ (C×)n. We
now choose an element p1 =

∑
i bipi with b1 = 1, bi = 0 for i = 2, · · · , n, then

we have a homomorphism

γ1 : C× → H

λ 7→ (λ, 1, · · · , 1)
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If we compactify this 1-dimensional subtorus by adding two points {0,∞},
this induced projective line intersects Dp1 and D−p1 only in subregular points.
Then we translate this projective line a little bit, i.e., multiply its coordinates
by a complex number 1 + ε with ε very close to 0. By this way, we get a
projective line which intersects mirrors and toric divisors only in subregular
points.

In the diagram above, let ι map the second factor unchanged and pr1

denote the projection map to the first factor. Let a1, · · · , am be the points
in P1 which are mapped by ι′ into D and a0, a∞ be the points in P1 which
are mapped by ι′ into the toric divisor. Define a real valued function φ on
K ′ × ((P1 \ {a0, a1, · · · , am, a∞})× C×) by:

φ(κ, x) := h∗(ev(κ, ι(x)), ev(κ, ι(x))).

Here we write x instead of a point (q, t) ∈ P1 × C×.
Note that by monodromy invariance of h∗ this defines a single valued

continuous function. Then we conclude by the characterization in Lemma
3.23 that φ extends to a continuous function (also called φ) on K ′×(P1×C×).

We now investigate if this φ can take on negative values. If we denote the
parabolic region by K0, we observe that φ(κ, x) > 0 for κ ∈ K0. For parabolic
κ, we always have the projection of x onto the C× part nonzero so that φ must
be greater than 0. Define N by:

N := {(κ, x) ∈ K ′ × (P1 × C×) | φ(κ, x) ≤ 0}.

Then N is closed by the continuity of the function φ. Because N is invariant
under scalar multiplication in the second factor, we have that the projection
NK of N on K ′ along P1 × C× is also closed.

Now suppose κ ∈ ∂NK , then φ(κ, x) ≥ 0 otherwise κ cannot belong to the
boundary of NK by the continuity of φ. And we also have φ(κ, x0) = 0 for
some x0 ∈ P1 × C×. Suppose also that κ ∈ K ′hyp. Because ev(κ) is locally

biholomorphic on H◦×C× and the image ι′(C×) of C× under ι′ is not contained
in any single irreducible component of the added divisor by a previous remark,
we conclude that φ(κ, x) = 0 implies that x ∈ (a0 × C×) ∪ (a1 × C×) ∪ · · · ∪
(am×C×)∪ (a∞×C×) by the maximal principle. Hence φ(κ, ·) vanishes along
some C×-orbit.

Either i ∈ {1, · · · ,m} or {0,∞}, we know that at a non zero point x0 in
ai ×C× we can write the evaluation map ev(κ, x) locally of the form given in
Lemma 3.23:

ev(κ, ι(x)) = (y
1
2
−kα

1 , y2, · · · , yn+1) if i ∈ {1, · · · ,m}

ev(κ, ι(x)) = (y
1−k′p
1 , · · · , y1−k′p

m , y
1−k′′p
m+1 , · · · , y

1−k′′p
n+1 ) if i ∈ {0,∞}.
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Since κ lies in the hyperbolic region, so det(h∗) is of the signature (1, n). While
φ(κ, x) ≥ 0, then φ must possess the unique positive signature if we transform
these above coordinates into the standard coordinates zi for 1 ≤ i ≤ n + 1.
Since the image ι(P1 × C×) is of dimension 2, we then have the following
formula:

φ(κ, x) = |zi|2 − |zj |2 for some i, j

for x near x0. Then we know that it must take value in an open interval
containing 0 if x lies in a neighbourhood of x0 which is in contradiction to
that φ(κ, x) ≥ 0 for x takes value in a neighbourhood of x0.

Therefore, we conclude that if κ ∈ ∂NK then κ is outside of K ′hyp. Since

K ′hyp ∪K0 is connected and not contained in NK , we conclude that K ′hyp∪K0

is disjoint from NK and hence K ′hyp is disjoint from NK as well. This shows

that φ(κ, x) > 0 when κ ∈ K ′hyp. In particular we have that on the ι image of

C××C×, evaluation maps into Bn×C×, hence projective evaluation maps into
Bn. And the desired result follows by varying the map ι so that the images of
ι′ cover H◦. �

Remark 3.25. From previous computation, we can know that the monodromy
along toric strata has only two different eigenvalues. But only those stra-
ta where one eigenvalue has multiplicity 1 and the other multiplicity n are
mapped under the projective evaluation map to mirrors in the hyperbolic
complex ball. And in fact, these strata act like complex reflections up to a
scalar.

3.6. An example of ball quotients

In fact, under suitable so-called Schwarz conditions, we wish to find a ball
quotient structure for our space W\H◦ as follows

Pev : W\H◦ → Γ\B
with Γ a discrete subgroup of Aut(B) with finite covolume, although we have
not arrived there in this thesis. We even wish to find a modular interpre-
tation for these (potential) ball quotients. Namely, does there exist such a
commutative diagram

W\H◦ Pev−−−−→ Γ\By y
M Per−−−−→ Γ′\B

that M is a suitable moduli space with Per a suitable period map. For R of
type An with k′ = 0, the answer is already given by the theory of Deligne-
Mostow. In fact, the classical root system is just a special case of the theory
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of Deligne-Mostow with all the weights being equal. We also encounter the
moduli space of Del Pezzo surfaces when we look at the type En. However, for
the other root systems, we barely have any idea about them for the moment.
We shall investigate the An case here since this example as well as type En
cases strongly motivated current research presented in this thesis.

Example 3.26. For the root system R of type An, we have to impose a
condition k′ = 0. Let be given n+3 pairwise distinct points z0, · · · , zn+2 on the
projective line P1 and n+ 3 associated rational numbers µ0, · · · , µn+2 ∈ (0, 1)
with

∑
µi = 2. Fix z0 = 0 and zn+2 =∞, if we denote the simply connected

torus by H ′, then H ′◦ can be defined as

H ′◦ = {(z1, · · · , zn+1) ∈ (C×)n+1 | z1 · · · zn+1 = 1, zi 6= zj

for each pair of distinct(i, j)}.

And then the adjoint torus

H◦ = Cn+1\H ′◦

can be defined with Cn+1 = P∨/Q∨ the cyclic group of order n+1. LetM0,n+3

denote the moduli space of genus 0 curve with n + 3 marked points. Write
µi = mi/m with m being their smallest denominator, consider the algebraic
curve C(z) defined by the affine equation:

C(z) : ym =
∏

(ζ − zi)mi .

Then the periods of the cyclic cover of C∫ zi+1

zi

dζ

y

are just the solutions of the hypergeometric equations. If we take µi = k
for i = 1, · · · , n + 1 and the remaining µ0 = µn+2 = (2 − (n + 1)k)/2 so
that it becomes our special hypergeometric system associated with the root
system An. Let Sµ denote the subgroup of the symmetric group Sn+3 fixing
µ = (µ0, · · · , µn+2). The half integrality condition from the theory of Deligne-
Mostow is given as follows:

µi + µj < 1⇒ (1− µi − µj) ∈

{
1/N if µi 6= µj

2/N if µi = µj
for all i 6= j.

This happens to coincide with the Schwarz conditions for the special hyper-
geometric system with type An along the toric strata, along the mirrors and
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near the identity element:

(n− 1)k/2 = (1− µ0 − µ1) ∈ 1/N
(1− 2k)/2 = (1− µ1 − µn+1)/2 ∈ 1/N

((n+ 1)k − 1)/2 = (1− µ0 − µn+2)/2 ∈ 1/N.
If these conditions are satisfied, then we have a commutative diagram

W\H◦ Pev−−−−→ Γn\Bny y
Sµ\M0,n+3

Per−−−−→ Γ′n\Bn

with left vertical arrow a covering map and top arrow being an isomorphism
onto a Heegner divisor complement.





CHAPTER 4

Frobenius structures

In this chapter, we present a quite preliminary result about the Frobenius
structure on H◦ × C×. Since the torsion free and flat connection ∇̃κ defines
an affine structure on H◦ × C×, we would naturally speculate if there exists
a Frobenius structure on it. It turns out to be the case in some weak sense,
at least. We briefly introduce the basic definition of Frobenius manifolds in
Section 4.1 and then construct a Froebnius algebra on our H◦×C× in Section
4.2.

4.1. Frobenius manifolds

We shall in this section introduce the basic definition of Frobenius struc-
tures on a manifold briefly. For a good exposition, interested reader can consult
the book by Manin [26] and the lecture notes of Looijenga [25].

For the moment, to us a C-algebra is simply a C-vector space E endowed
with a C-bilinear map (also referred as the product): E×E → E, (u, v) 7→ uv
which is associative and a unit element e ∈ E such that e.u = 1.u = u for all
u ∈ E. We often write 1 for e.

Definition 4.1. Let E be a C-algebra which is commutative, associative and
finite dimensional as a C-vector space. A linear function on E, F : E → C
is called a trace map if the map (u, v) ∈ E × E 7→ a(u, v) := F (uv) is a
nondegenerate bilinear form. The pair (E,F ) is called a Frobenius algebra.

Remark 4.2. The fact that the bilinear form a is nondegenerate is equivalent
to that the resulting map u 7→ F (u.−) is a linear isomorphism of E onto its
dual space E∗ consisting of all the linear forms on E. We also need to point
out that the trace map defined here is in general not the one that we usually
associate a linear operator (if an element u of E is regarded as a linear operator
x ∈ E 7→ ux ∈ E) with a number.

Lemma 4.3. The bilinear form a satisfies the associative law a(uv,w) =
a(u, vw). And conversely, any nondegenerate bilinear symmetric map a : E ×
E → C with the associative law determines a trace map on E.

73
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Proof. a(uv,w) = F ((uv)w) = F (u(vw)) = a(u, vw) since E is an asso-
ciative C-algebra, then the first statement follows.

Conversely, we can define a linear function I by I(u) := a(u, e). Then
we can define a new map a′ : E × E → C as follows: a′(u, v) := I(uv), but
we have I(uv) = a(uv, e) = a(u, v) by the associativity of a. This shows the
newly defined map a′ is the same as a which is also a nondegenerate bilinear
symmetric form. The second statement follows. �

Here are some simple examples of Frobenius algebra.

Example 4.4. (i) For the field C which could be viewed as a C-algebra, we
can define a trace map by a nonzero scalar multiplication F : C→ C; u 7→ νu
for ν 6= 0.

(ii) Let E = C[t]/(tn) with n ∈ Z+. A linear form F : E → C is a trace
map if and only if F (tn−1) 6= 0.

We can construct new Frobenius algebras out of old ones by the following
ways: direct sums, tensor products and rescalings.

Direct sums. Let (E1, F1) and (E2, F2) be Frobenius C-algebras. Then
the vector space E1 ⊕ E2 is an algebra for componentwise multiplication:
(u1, v1)(u2, v2) := (u1u2, v1v2). Its identity element is (1, 1). Then (u1, u2) 7→
F1(u1) + F2(u2) is a trace map on E1 ⊕E2. It is easy to check that any trace
map on E1 ⊕ E2 must be of this form.

Tensor products. Let (E1, F1) and (E2, F2) be Frobenius algebras. Then
the vector space E1⊗E2 is an algebra whose product can be defined as (

∑
i ui⊗

vi)(
∑

j u
′
j ⊗ v′j) =

∑
i,j uiu

′
j ⊗ viv

′
j). Its identity element is 1 ⊗ 1. Then

u⊗ v 7→ F1(u)F2(v) is a trace map on E1 ⊗ E2.
Rescaling. Let E be a Frobenius algebra. For any nonzero scalar ν ∈ C

we can define a new algebra structure with the same underlying vector space,
i.e., a new product given as u ∗ v = νuv. Its identity element is ν−1e. Then
νF is a trace map on the new algebra (E, ∗).

Now let us see what kind of role the associativity condition plays here?
If we are given a Frobenius algebra, we can also consider the trilinear map
T : E × E × E → C defined by T (u, v, w) := F (uvw). But conversely, if
we are only given a vector space E, a trilinear map T : E × E × E → C,
and an element e ∈ E, does T defines a Frobenius algebra structure on E?
The answer is obviously no. We must impose some additional conditions so
that T can be used to define a Frobenius algebra on E. First T must be
required to be symmetric. And we also want that the bilinear form (u, v) ∈
E × E 7→ T (u, v, e) ∈ C is nondegenerate. We thus have defined a bilinear
map (product) E × E → E, (u, v) 7→ uv characterized by that T (uv, x, 1) =
T (u, v, x) for all x ∈ E. Since T is symmetric, the product is commutative and
e becomes the identity element of E for ue is characterized by T (ue, e, x) =
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T (u, e, x) for all x ∈ E. Besides these two conditions, the associativity dose
not hold a priori and thus has to be endowed. This means we want that
T (uv,w, x) = T (u, vw, x) for all u, v, w, x ∈ E. In fact, we can write out this
condition in terms of a basis of E. If {u1, · · · , un} is a basis of E, define
Tijk := T (ui, uj , uk), then (ajk := T1jk)jk is a nondegenerate matrix. Let

(ajk)jk denote its inverse matrix, then we have

uiuj = Tijka
klul

where the Einstein summation convention is used. The above associativity
condition also means we want that T (uiuj , uk, ul) = T (ui, ujuk, ul) in terms
of the basis. So we have T (Tijpa

pquq, uk, ul) = T (ui, Tjkpa
pquq, ul) which is

equivalent to

Tijpa
pqTqkl = Tjkpa

pqTiql. (Ass.)

This is a system of equations which must be satisfied in order that the product
being associative.

Now let be given a complex manifold M whose holomorphic tangent bun-
dle is denoted by TM . We are also given on TM a nondegenerate symmetric
bilinear form a and a symmetric trilinear form T , both depending on holomor-
phically on the base point. The product of this bundle can be characterized
by the property that a(XY,Z) = T (X,Y, Z), denoted by · : TM × TM →
C;X ·Y 7→ XY . It is clear that this product is commutative by the symmetry
of T . We use ∇ to denote the complex counterpart Levi-Civita connection on
the holomorphic tangent bundle TM which is characterized by the following
2 properties.

compatibility: Z(a(X,Y )) = a(∇ZX,Y ) + a(X,∇ZY ),
torsion freeness: ∇XY −∇YX = [X,Y ]

and its curvature form is given by

R(∇)(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

We can then define a one-parameter family of connections ∇(µ) on this
bundle by

∇(µ)XY := ∇XY + µX · Y, µ ∈ C.
By the commutativity of the product we immediately have

∇(µ)XY −∇(µ)YX − [X,Y ] = ∇XY −∇YX − [X,Y ] = 0

which shows that ∇(µ) is torsion free. If for a local vector field X on M , ιX
denotes the multiplication operator on vector fields: ιX(Y ) := X · Y , then we
can define a new tensor

R′(∇)(X,Y ) := [∇X , ιY ]− [∇Y , ιX ]− ι[X,Y ]
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which is a holomorphic 2-form taking values in the symmetric endomorphism
of TM . It’s clear that a(R′(∇)(X,Y )Z,W ) is antisymmetric in (X,Y ) and
symmetric in (Z,W ).

Proposition 4.5. The following statements are equivalent:

(i) ∇ is flat, the product is associative and the trilinear form T (X,Y, Z)
locally is given by T (X,Y, Z) = ∇X∇Y∇ZΦ where Φ : U → C is a
holomorphic function on a domain U ⊂M .

(ii) ∇ is flat, the product is associative and R′ ≡ 0.
(iii) The connection ∇(µ) is flat for any µ ∈ C.

Proof. First prove (ii)⇔ (iii). We have

∇(µ)X∇(µ)Y = (∇X + µιX)(∇Y + µιY )

= ∇X∇Y + µ(ιX∇Y +∇XιY ) + µ2ιXιY .

Similarly,

∇(µ)Y∇(µ)X = ∇Y∇X + µ(ιY∇X +∇Y ιX) + µ2ιY ιX ,

∇(µ)[X,Y ] = ∇[X,Y ] + µι[X,Y ].

Then we have

R(∇(µ))(X,Y ) = ∇(µ)X∇(µ)Y −∇(µ)Y∇(µ)X −∇(µ)[X,Y ]

= R(∇)(X,Y ) + µR′(∇)(X,Y ) + µ2(ιXιY − ιY ιX).

So if ∇ is flat, i.e., R(∇) = 0. We then see that ∇(µ) is flat for all µ if and
only if R′(∇) = 0 and ιXιY = ιY ιX for all X,Y . While the condition that
ιXιY = ιY ιX for all X,Y is equivalent to that X · (Y ·Z) = Y · (X ·Z) for all
X,Y, Z. Since the left hand side X · (Y · Z) = X · (Z · Y ) and the right hand
side Y · (X · Z) = (X · Z) · Y by the commutativity of the product. This is
just the associativity property. So (ii)⇔ (iii) follows.

Now let us prove (i) ⇔ (ii). Since a is flat we can pass all the things to
a flat chart (U,ϕ) such that D = ϕ(U) ⊂ Cn is an open polydisk. Under this
setting, a has constant coefficients, ∇ becomes the usual derivation and the
flat vector fields are just the constant ones. Suppose we are given holomorphic
functions fijk : D → C for 1 ≤ i, j, k ≤ n. It is well-known that these can arise
as the third order partial derivatives of a holomorphic function Φ if and only
if ∂lfijk is symmetric in all its indices. In other words, if f is a trilinear form
on the tangent bundle of D, then there exists a holomorphic function Φ such
that f(X,Y, Z) = ∇X∇Y∇ZΦ for all triples of flat vector fields (X,Y, Z) if
and only if X(f(Y,Z,W )) is symmetric in its all arguments for all quadruples
of flat vector fields (X,Y, Z,W ). Since we have f(X,Y, Z) = a(XY,Z) and
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we already know that f is symmetric in its three arguments. We have

Xa(Y · Z,W ) = a(∇X(Y · Z),W ) + a(Y · Z,∇XW )

= a(∇X(Y · Z),W )

But since X,Y, Z are all flat, we also have

R′(∇)(X,Y )Z = ∇X(Y · Z)−∇Y (X · Z)

and then it is clear that Xa(Y ·Z,W ) is symmetric in X and Y if and only if
R′ = 0. �

Remark 4.6. The function Φ that appears in Statement (i) of Proposition 4.5
is called a (local) potential function. Since here only its third order deriva-
tives matter, it is (in terms of flat coordinates (z1, · · · , zn)) unique up to a
polynomial of degree two. In particular, a potential function needs not be
defined on all of M . The associativity equation (Ass.) now is read as a highly
nontrivial system of partial differential equations: if (z1, · · · , zn) is a system
of flat coordinates and ∂ν := ∂

∂zν , then we require that for all i, j, k, l,

(∂i∂j∂pΦ)apq(∂q∂k∂lΦ) = (∂j∂k∂pΦ)apq(∂i∂q∂lΦ) (WDVV)

These are known as the Witten-Dijkgraaf-Verlinde-Verlinde equations.

Then we are properly prepared to introduce the main notion of this chap-
ter.

Definition 4.7. A complex manifold M is called a Frobenius manifold if its
holomorphic tangent bundle is fiberwisely endowed with the structure of a
Frobenius algebra (·, F, e) satisfying

(i) the equivalent conditions of Proposition 4.5 are fulfilled for the associated
symmetric bilinear and trilinear forms a and T ,
and

(ii) the identity field e on M is flat for the Levi-Civita connection of a.

Here are some examples of Frobenius manifolds.

Example 4.8. (i) The trivial example is M = Cn whose coordinates are
(z1, · · · , zn), a =

∑
i(dz

i)2 and product ∂i · ∂i = ∂i. A potential function

is a cubic form Φ(z) = 1
6

∑
i(z

i)3 and the family of connections is given by

∇(µ)∂i∂j = µδij∂i.

(ii) (Two-dimensional case) In this case the product on a vector space E of
dimension two with nonzero unit e is automatically associative. We then have
E is isomorphic to the semisimple C ⊕ C or to the nonsemisimple C[y]/(y2).
It remains to find the potential functions. Let e be the unit vector field and
F the trace differential. Since e is flat, a(e, e) = F (e · e) is constant, say equal
to c ∈ C. There are two cases depending on whether c is 0 or not.
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We first do the case c = 0. Then we can find flat coordinates (z, w) such
that e = ∂z and a = dz⊗dw+dw⊗dz. Since we have a(∂z ·∂z, ∂z) = a(∂z, ∂z) =
0 and a(∂z · ∂z, ∂w) = a(∂z, ∂w) = 1, it follows that Φzzz = 0 and Φzzw = 1.
But since ∂z · ∂w = ∂w, we must also have Φzwz = 1 and Φzww = 0. It follows
that Φ(z, w) = 1

2z
2w + f(w) up to quadratic terms, where f is holomorphic.

If c 6= 0, then we can find flat coordinates (z, w) such that e = ∂z and
a = cdz ⊗ dz + cdw ⊗ dw. Then we want that Φzzz = c, Φzzw = 0, Φzwz = 0,
Φzww = c. It follows that Φ(z, w) = 1

6cz
3 + 1

2czw
2 + f(w) up to quadratic

terms, where f is holomorphic.
Conversely, in both cases, with these choice of e and a, any Φ of the form

defines a Frobenius manifold.

Remark 4.9. The most important class of examples is furnished by quantum
cohomology which in fact motivated the definition in the first place. And
another beautiful class of examples is furnished by the space of polynomials
which is due to Saito and Dubrovin. But we shall not elaborate these two
important classes of Frobenius manifolds over here. Interested readers can
consult Manin [26] for detailed explanation.

4.2. Frobenius algebras on H◦ × C×

We can already see from preceding chapters that there exists a family of flat
connections ∇̃κ on H◦ ×C× with explicit formula. We can hence accordingly
define a product structure for each κ ∈ K on the tangent bundle of H◦ × C×
which happens to give rise to a Frobenius algebra on it.

First we already have a family of connections ∇κ on H◦ such that{
∇κ(ζ) = (∇0 + Ωκ)ζ

∇κ∇κ(ζ) = −ζ ∧Aκ,

among which

Ωκ :=
1

2

∑
α>0

kα
eα + 1

eα − 1
dα⊗ dα⊗ ∂α∨ + (Bκ)∗.

Then we accordingly define Ω̃κ on H◦ × C× by

Ω̃κ :


ζ ∈ ΩH◦ 7→

1

2

∑
α>0

kαζ(Xα)dα⊗ dα+ (Bκ)∗(ζ)− ζ ⊗ dt

t
− dt

t
⊗ ζ,

dt

t
7→ Aκ − dt

t
⊗ dt

t
.
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to get a family of flat connections on H◦ × C×. Based on this, we can write
Ω̃κ explicitly:

Ω̃κ :=
1

2

∑
α>0

kα
eα + 1

eα − 1
dα⊗ dα⊗ ∂α∨ + (Bκ)∗ + cκ

∑
α>0

dα⊗ dα⊗ t ∂
∂t

−
∑
αi∈B

dαi ⊗
dt

t
⊗ ∂pi −

∑
αi∈B

dt

t
⊗ dαi ⊗ ∂pi −

dt

t
⊗ dt

t
⊗ t ∂

∂t
.

We then transfer the connections ∇̃κ defined on the cotangent bundle of H◦×
C× to the connections defined on the tangent bundle of H◦ × C×:

(Ω̃κ)∗ :=
1

2

∑
α>0

kα
eα + 1

eα − 1
dα⊗ ∂α∨ ⊗ dα+ ((Bκ)∗)′ + cκ

∑
α>0

dα⊗ t ∂
∂t
⊗ dα

−
∑
αi∈B

dαi ⊗ ∂pi ⊗
dt

t
−
∑
αi∈B

dt

t
⊗ ∂pi ⊗ dαi −

dt

t
⊗ t ∂

∂t
⊗ dt

t
.

Since T(p,t)(H
◦ × C×) = TpH

◦ ⊕ TtC×, we can write a vector field X̃ on

H◦ × C× in the following form:

X̃ = X(p, t) + λ1(p, t)t
∂

∂t
,

among which X(p, t) is a vector field on H◦ and λ1(p, t) is a holomorphic

function depending on both p and t. Here we write X̃ = X + λ1t
∂
∂t just for

convenience.
Let Ỹ = Y +λ2t

∂
∂t , inspired by the flat connection ∇̃κ, we define a product

for each κ on each fiber of the tangent bundle of H◦ × C× by

X̃ ·κ Ỹ |(p,t) :=
1

2

∑
α>0

kα
eα + 1

eα − 1
α(X)α(Y )α∨ + bκ(X,Y ) + cκ

∑
α>0

α(X)α(Y )t
∂

∂t

−
∑
αi∈B

αi(X)λ2pi −
∑
αi∈B

λ1piαi(Y )− λ1λ2t
∂

∂t

=
1

2

∑
α>0

kα
eα + 1

eα − 1
α(X)α(Y )α∨ + bκ(X,Y ) + aκ(X,Y )t

∂

∂t

− λ2X − λ1Y − λ1λ2t
∂

∂t
. (4.1)

We already know that aκ is a symmetric bilinear form on h:

aκ : h× h→ C.
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We can extend aκ to be a symmetric bilinear form on h ⊕ C which is the
tangent space of H◦ × C× at (p, t) by defining


aκ(X, t

∂

∂t
) = 0

aκ(t
∂

∂t
, t
∂

∂t
) = −1.

Now is aκ(α∨, ·) a linear form whose zero set is the hyperplane which is
perpendicular to α and therefore it is proportional to α. By evaluating both
sides on α∨ we see that

aκ(α∨, ·) =
aκ(α∨, α∨)

α(α∨)
α.

Remark 4.10. We also notice that

(t
∂

∂t
) ·κ Ỹ = −Y − λ2t

∂

∂t
= −Ỹ ,

from which we can see that −t ∂∂t plays a role of identity in this algebra.

Theorem 4.11. The product structure ·κ defined on T (H◦ × C×) by (4.1)
makes each fiber of T (H◦ × C×) into a Frobenius algebra.

Proof. In order to see this product structure indeed defines a Frobenius
algebra on each fiber of the tangent bundle of H◦ × C×, we need to verify 3
properties:

1. the product is commutative,
2. the product satisfies the associativity law with respect to the symmetric

bilinear form aκ (sometimes also called Frobenius condition), with this
property the trace map can be determined by Lemma 4.3,

3. the product is associative.

1. commutativity of the product.
It’s quite obvious since the expression for X̃ ·κ Ỹ is symmetric in {X̃, Ỹ }.

2. Frobenius condition.
Let Z̃ = Z + λ3t

∂
∂t , then we have
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aκ(X̃ ·κ Ỹ , Z̃)

=
1

2

∑
α>0

kα
eα + 1

eα − 1
α(X)α(Y )aκ(α∨, Z̃) + aκ(bκ(X,Y ), Z) + aκ(X,Y )aκ(t

∂

∂t
, Z̃)

− λ2a
κ(X, Z̃)− λ1a

κ(Y, Z̃)− λ1λ2a
κ(t

∂

∂t
, Z̃)

=
1

2

∑
α>0

kα
eα + 1

eα − 1
· a

κ(α∨, α∨)

α(α∨)
α(X)α(Y )α(Z) + aκ(bκ(X,Y ), Z)

− λ3a
κ(X,Y )− λ2a

κ(X,Z)− λ1a
κ(Y, Z) + λ1λ2λ3.

From this, we can see that

aκ(X̃ ·κ Ỹ , Z̃) = aκ(X̃, Ỹ ·κ Z̃),

since this expression is fully symmetric in {X̃, Ỹ , Z̃}. In fact, the symmetry
of aκ(bκ(X,Y ), Z) is guaranteed by Condition (3) of Lemma 2.10.
3. associativity of the product.

Let us look at the connection ∇̃κ(µ) defined by

∇̃κ(µ)X̃ Ỹ := ∇̃κ
X̃
Ỹ + µX̃ ·κ Ỹ , µ 6= −1.

Written out,

∇̃κ(µ)X̃ Ỹ =
1

2
(1+µ)

∑
α>0

kα
eα + 1

eα − 1
α(X)α(Y )α∨+

1

2
(1+µ)k′

∑
α>0

α(X)α(Y )α′

+ (1 +µ)cκ
∑
α>0

α(X)α(Y )t
∂

∂t
− (1 +µ)λ2X − (1 +µ)λ1Y − (1 +µ)λ1λ2t

∂

∂t
.

If we replace a tangent vector (1 + µ)v ∈ h ⊕ C by vnew, then by Remark
4.12 the above connection becomes a connection on the newly defined tangent
space h⊕C with the connection form (Ω̃κ)∗. But we already know that ∇̃κ is

flat, so we can see that ∇̃κ(µ) (µ ∈ C and µ 6= −1) is also flat. Therefore, the
associativity of the product follows by Proposition 4.5. �

Remark 4.12. In fact, there are two ways to look at the dual pairing h∗ ×
h → C; (α,X) 7→ α(X) when we rescale the tangent space h ⊕ C. One
way is to rescale the h∗ at the same time by defining αnew := (1 + µ)−1α
so that αnew(Xnew) = α(X). Another way is to rescale the dual pairing by
(α,Xnew)new := α(X).

Remark 4.13. In fact, our Frobenius algebra given above includes the Frobe-
nius algebra constructed by Bryan and Gholampour in [4] as a special case,
which requires k′ = 0 for type An and k = k′ for type BCFG. They provided
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a proof for the associativity of the product from a point of view of Gromov-
Witten theory.

Corollary 4.14. The Weyl group acts on the tangent bundle by automor-
phisms. Namely, if we define

g(eα) = eg(α)

for g ∈W , then for X̃, Ỹ ∈ Γ(T (H◦ × C×)), we have

g(X̃ ·κ Ỹ ) = g(X̃) ·κ g(Ỹ ).

Proof. Let sβ be the reflection about the hyperplane orthogonal to β.
By [2], sβ permute the positive roots other than β. And since the terms

eα + 1

eα − 1
∂α∨ and α(X)α(Y )

remain unchanged under α → −α, the effect of sβ to the formula for X̃ ·κ Ỹ
is to permute the order of the sum:

sβ(X̃ ·κ Ỹ )

=
1

2

∑
α>0

ksβ(α)
esβ(α) + 1

esβ(α) − 1
sβ(α)(sβX)sβ(α)(sβY )∂sβ(α∨) + bκ(sβX, sβY )

+ aκ(sβX, sβY )sβ(t
∂

∂t
)− sβ(λ2X)− sβ(λ1Y )− sβ(λ1λ2t

∂

∂t
)

=
1

2

∑
α>0

kα
eα + 1

eα − 1
α(sβX)α(sβY )∂α∨ + bκ(sβX, sβY )

+ aκ(sβX, sβY )t
∂

∂t
− λ2sβX − λ1sβY − λ1λ2t

∂

∂t

=(sβX + λ1t
∂

∂t
) ·κ (sβY + λ2t

∂

∂t
)

=(sβX + sβ(λ1t
∂

∂t
)) ·κ (sβY + sβ(λ2t

∂

∂t
))

=sβ(X̃) ·κ sβ(Ỹ )

since sβ(λit
∂
∂t) = λit

∂
∂t . Then the corollary follows. �

Therefore, we construct a W -invariant Frobenius algebra on H◦ × C×.



APPENDIX A

Classification of (extended) Dynkin diagrams

This appendix is to address the question which arises in Chapter 3 when
dealing with the hyperbolic structure on algebraic torus. In order to determine
the hyperbolic region for the projective structure defined on the algebraic
torus, we have to compute the determinant of the Gram matrix of the invariant
Hermitian form induced on it. The basic technique used there comes from the
classification theory of the (extended) Dynkin (Coxeter) diagrams. Here we
shall briefly explain this theory and then we are able to prove Theorem 3.18
with the help of this theory. There are several books which have a good
exposition on this theory Bourbaki [2], Humphreys [18], as well as the lecture
notes of Heckman [13].

A.1. Root systems

Let V be a finite dimensional Euclidean vector space with an inner product
(·, ·). For a nonzero vector α ∈ V , there corresponds an orthogonal reflection
sα with the hyperplane perpendicular to α being the mirror. This reflection
could be written as

sα(β) = β − 2(β, α)

(α, α)
α

for any β ∈ V . We can easily check that

sα(α) = −α and sα(β) = β for (β, α) = 0.

Then s2
α = 1 follows from the above formula directly. We recall the definition

of a root system first.
A finite subset R of V is called a root system if it does not contain 0 and

generates V such that any sα leaves R stable and sα(β) ∈ β + Zα for any
α, β ∈ R. Any vector belonging to R is called a root. The dimension of V is
called the rank of the system. The group W (R) generated by the sα is called
the Weyl group of R.

This root system R is said to be reduced if R ∩ Rα = {α,−α} for any
α ∈ R, and said to be irreducible if nonempty R can not be decomposed as a
direct sum of two nonempty root systems.

83
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We denote the complement of all mirrors by V ◦ and a connected compo-
nent of V ◦ is called a Weyl chamber. Once we fix a Weyl chamber and denote
it by C, it gives rise to a corresponding partition

R = R+ tR−
of R into positive and negative parts. This Weyl chamber is called a positive
Weyl chamber. In fact, the positive part R+ is given by

R+ = {α ∈ R | (α, γ) > 0 for ∀γ ∈ C}.
Conversely, once a positive roots R+ is fixed, a corresponding Weyl chamber
is also determined by

C = {γ ∈ V | (γ, α) > 0 for ∀α ∈ R+}.
We can see from above that C and R+ mutually determines each other. A
root of R+ is called simple if it can not be written as a sum of two positive
roots of R+. The set of all the simple roots is called a fundamental system of
R, denoted by B. The simple roots in R+ are linearly independent and hence
become a basis of V . The highest root α̃ of R is defined as α̃ =

∑n
i=1 niαi

such that ni ≥ pi (i = 1, · · · , n) for any root α =
∑n

ı=1 piαi.
We write the so-called Cartan integers as follows

nαβ = 2
(α, β)

(β, β)
= −2

‖α‖
‖β‖

cos
π

mαβ

for α, β ∈ R, where mαβ denotes the order of sαsβ.
If we write nij instead of nαiαj for αi, αj ∈ B, we have all the possibilities

of nij and mij for a root system in the following lemma.

Lemma A.1. There are only finitely many possibilities for Cartan integers
nij and the order mij of sαsβ for a root system R, up to interchanging i and
j:

1) nii = 0; mii = 1;
2) nij = nji = 0; mij = 2;
3) nij = nji = −1; mij = 3;
4) nij = −2, nji = −1; mij = 4;
5) nij = −3, nji = −1; mij = 6.

The matrix N = (nij) and M = (mij) are called the Cartan matrix and
Coxeter matrix respectively for R. Then we can introduce the Dynkin diagram
for a root system R as follows.

The Dynkin diagram of a root system R associated with its Coxeter matrix
M is a marked graph with n nodes labelled 1, · · · , n and nodes are joined in the
following way: two distinct nodes are joined by 0,1,2 or 3 bonds in case 2), 3),
4) and 5) above in the Lemma A.1. Moreover, in case 4) and 5), that is when
|nij | > 1, an inequality sign > is placed on the double or triple bond joining
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the nodes corresponding to i and j oriented towards the node corresponding
to j:

(for nij = −2) (for nij = −3)

Then we have the list of possible Dynkin diagrams.

Theorem A.2. Suppose R is an irreducible reduced root system, its Dynkin
diagram is isomorphic to one of the following types of diagrams:

· · ·An

· · ·Bn

· · ·Cn

· · ·Dn

E6

E7

E8

F4

G2

No two of these diagrams are isomorphic.

Once we have a Coxeter matrix M = (mij) for a root system R, we can
define the corresponding Gram matrix G(M) = (gij) in this way

G(M) := (gij = −2 cos(π/mij))

which could be regarded as the metric of the inner product (up to a scalar)
with respect to these simple roots.

Now in order to take affine-linear transformation of affine space V into con-
sideration, we can introduce affine root system for V by adding a new root α0

to the fundamental system which is defined as α0 = −α̃. Then the correspond-
ing extended Dynkin diagram is defined as follows: add a node corresponding
to α0 into its normal Dynkin diagram and n0i’s, m0i’s and g0i’s are defined
in the same way as other nij ’s, mij ’s and gij ’s. Then we have the analogue
theorem to Theorem A.2.
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Theorem A.3. Suppose R is an irreducible reduced root system, its extended
Dynkin diagram is isomorphic to one of the following types of diagrams:

· · ·Ãn(n ≥ 2)

· · ·B̃n(n ≥ 3)

· · ·C̃n(n ≥ 3)

· · ·D̃n(n ≥ 4)

Ẽ6

Ẽ7

Ẽ8

F̃4

G̃2

No two of these diagrams are isomorphic.

In order to determine whether these diagrams are positive definite or not,
we need the very important following lemma to give an inductive way to
compute the determinant of their Gram matrix. This technique will also be
used to compute the determinant of the Hermitian form in Chapter 3.
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Lemma A.4. Suppose a (extended) Dynkin diagram with n = p+ q nodes is
made of two Dynkin subdiagrams, one with p nodes and another one with q
nodes. There is only one pair of nodes, each of which from distinct Dynkin
subdiagrams, connected by bond(s). Then let’s say the last node of the first
Dynkin subdiagram is connected to the first node of the second Dynkin subdi-
agram. Let

Gn = (gij)1≤i,j≤n

be the Gram matrix of the full Dynkin diagram. Let

Gp = (gij)1≤i,j≤p, Gq = (gij)p+1≤i,j≤n

be the Gram matrices of the two Dynkin subdiagrams. Let

Gp−1 = (gij)1≤i,j≤p−1, Gq−1 = (gij)p+2≤i,j≤n

be the Gram matrices of the two new Dynkin subdiagrams obtained by deleting
the last node (resp. the first node) from the first Dynkin subdiagram (resp.
the second Dynkin subdiagram) together with all bonds connected to these two
nodes. Then we have

det(Gn) = det(Gp) det(Gq)− 4 cos2(π/m) det(Gp−1) det(Gq−1).

Proof. Since the two Dynkin subdiagrams are only connected by the
bond(s) between the pth and (p + 1)th nodes, we have gij ’s vanish for all
1 ≤ i ≤ p, p+ 1 ≤ j ≤ n and p+ 1 ≤ i ≤ n, 1 ≤ j ≤ p, except for

gp(p+1) = g(p+1)p = −2 cos(π/m).

Hence the formula follows easily from the Leibniz formula

det(Gn) =
∑
σ∈Sn

sgn(σ)

n∏
l=1

glσ(l)

as long as we notice that all summands over σ ∈ Sn vanish except for σ ∈
Sp ×Sq and for σ ∈ Sp−1 × (p p+ 1)×Sq−1. �

Using this lemma, we can quickly know that the Dynkin diagrams (resp.
extended Dynkin diagrams) for root systems are all positive definite (resp.
positive semidefinite).

A.2. Proof of Theorem 3.18

Now we can make use of this technique to compute the determinant of the
Hermitian form (3.1) for type ABCFG, given by Theorem 3.18. Let’s recall
how the Hermitian form is given first.
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hij =

{
q

1
2
i + q

− 1
2

i if i = j

− sij if i 6= j
(A.1)

among which qi and sij are given in Section 3.3.
As the completed Dynkin diagram for type An is a loop which is somewhat

different from other types, we compute this determinant first. But before we
proceed to this, we need to look at the determinant of its normal type. Its
Hermitian form is given as follows according to (A.1).

hij(An) =


2 cosπk if i = j

− e−π
√
−1k′ if i = j + 1

− eπ
√
−1k′ if i = j − 1

0 otherwise

since

q
1
2 = exp(−π

√
−1k), q′

1
2 = exp(−π

√
−1k′).

Then we have the determinant of the Hermitian form of type An.

Lemma A.5. If the Hermitian form of type An is given as above, then we
have

det(h(An)) =


1 +

m∑
l=1

2 cos 2lπk if n = 2m

m∑
l=1

2 cos(2l − 1)πk if n = 2m− 1

Proof. Using the technique in Lemma A.4, we immediately have this
inductive formula

det(h(An)) = 2 cosπk det(h(An−1))− det(h(An−2)).

Then the result follows by simple calculation. �

With this on hand, we can proceed to compute the determinant of the
Hermitian form of the affine type Ãn.

Theorem A.6. If the Hermitian form of type Ãn is given as in (A.1), then
we have

det(h(Ãn)) = −4 sin
(n+ 1)π(k + k′)

2
sin

(n+ 1)π(k − k′)
2

.
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Proof. Since the completed Dynkin diagram of Ãn will not be split into
two independent subdiagrams by cutting off only one bond, we can not apply
the lemma directly. So we have to compute it step by step.

det(h(Ãn)) =2 cosπk det(h(An))

− (−e−π
√
−1k′)

(
(−eπ

√
−1k′) det(h(An))

+ (−1)1+n(−e−π
√
−1k′)(−eπ

√
−1k′)n−1

)
+ (−1)n+2(−eπ

√
−1k′)

(
(−1)n+1(−e−π

√
−1k′) det(h(An))

+ (−eπ
√
−1k′)(−eπ

√
−1k′)n−1

)
=2 cosπk det(h(An))− det(h(An−1))− e−π

√
−1(n+1)k′

− det(h(An−1))− eπ
√
−1(n+1)k′

= det(h(An+1))− det(h(An−1))− 2 cos(n+ 1)πk′

=2 cos(n+ 1)πk − 2 cos(n+ 1)πk′

=− 4 sin
(n+ 1)π(k + k′)

2
sin

(n+ 1)π(k − k′)
2

.

�

Now we shall compute the determinant of the Hermitian form of affine
type B̃n. But we have to compute the determinant of the Hermitian form of
type Dn first.

Lemma A.7. If the Hermitian form of type D̃n is given as in (A.1), then we
have

det(h(Dn)) = 4 cosπk cos(n− 1)πk.

Proof. We derive it inductively. We can compute

det(h(D3)) = 4 cosπk cos 2πk

directly. We cut off the bond connecting the first node and second node, then
by Lemma A.4, we have

det(h(Dn+1)) = 2 cosπk · det(h(Dn))− det(h(Dn−1))

= 2 cosπk · 4 cosπk cos(n− 1)πk − 4 cosπk cos(n− 2)πk

= 4 cosπk cosnπk.

�
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Theorem A.8. If the Hermitian form of type B̃n is given as in (A.1), then
we have

det(h(B̃n)) = −4 sinπ((n− 2)k + k′) sin 2πk.

Proof. Cutting off the bond between the (n − 1)-th node and the n-th
node and using Lemma A.4, we have

det(h(B̃n) =2 cosπk′ · det(h(Dn))− 2 cosπ(k − k′) · det(h(Dn−1))

=2 cosπk′ · 4 cosπk cos(n− 1)πk

− 2 cosπ(k − k′) · 4 cosπk cos(n− 2)πk

=− 4 sinπ((n− 2)k + k′) sin 2πk.

�

The determinant of the Hermitian form (3.1) for type CFG could also be
deduced in the same way. Therefore, we obtain the result in Theorem 3.18.
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Samenvatting

In deze scriptie bestuderen we de meetkundige structuren op comple-
menten van torische schikkingen. Dit fenomeen kan ook beschouwd worden
als de meetkunde van het gekwantiseerde periodische Calogero-Moser-systeem
geassocieerd aan een wortelsysteem.

Het klassieke Calogero-Moser-systeem beschrijft een eindig aantal iden-
tieke puntdeeltjes op de reële lijn die onder de invloed zijn van een omge-
keerd kwadratische potentiaal. De relatieve posities van deze punten worden
geparametriseerd door het complement van een hypervlakschikking van type
An in het quotiënt van een (n+ 1)-dimensionale vectorruimte naar zijn hoofd-
diagonaal. Deze scriptie generaliseert dit fenomeen naar zowel een willekeurig
wortelsysteem, als naar het periodieke geval.

Als eerste construeren we een projectieve structuur op het complement
van een torische schikking. Het idee hier achter is dat we een projectieve
structuur op een complexe variëteit M kunnen schrijven in termen van een
affiene structuur op M × C×. Op zijn beurt is het welbekend dat een affiene
structuur op een complexe variëteit gegeven wordt door een torsievrije en
vlakke connectie op zijn (co)raakbundel, en omgekeerd. Het construeren van
een projectieve structuur op M is dus equivalent met het produceren van een
torsievrije en vlakke connectie op M × C×.

Onze opzet is als volgt. We beginnen met een algebräısche torus H :=
Hom(Q,C×) gegeven door een wortelrooster Q := ZR, waar R een gere-
duceerd, irreducibel wortelsysteem is. Noteer de Weyl-groep van R met W .
Verder is ons ook een torische schikking gegeven, geassocieerd aan het wortel-
systeem R. Dit is een eindige verzameling van hypertori, elk gedefinieerd door
Hα := {h ∈ H | eα(h) = 1} waar eα een karakter van H is. We schrijven H◦

voor het complement van de vereniging van deze hypertori.
Gëınspireerd door het speciale hypergeometrische systeem geconstrueerd

door Heckman en Opdam, beschouwen we nu een familie van connecties ∇̃κ =
∇̃0 + Ω̃κ op de coraakbundel van H◦ × C×. Hier is κ een W -invariante mul-
tipliciteitsparameter voor R, gedefinieerd door κ := (kα)α∈R ∈ CR, ∇̃0 staat
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voor de (vlakke) translatie-invariante connectie op H × C×, en Ω̃κ is de vol-
gende connectievorm:

Ω̃κ :=
1

2

∑
α>0

kα
eα + 1

eα − 1
dα⊗ dα⊗ ∂α∨ + (Bκ)∗ + cκ

∑
α>0

dα⊗ dα⊗ t ∂
∂t

−
∑
αi∈B

dαi ⊗
dt

t
⊗ ∂pi −

dt

t
⊗ dt

t
⊗ t ∂

∂t
−
∑
αi∈B

dt

t
⊗ dαi ⊗ ∂pi .

Hier staat t voor de coördinaat op C×, cκ is een constante voor iedere κ, Bκ

staat voor een gegeven translatie-invariant tensorveld op H of H × C× en B
is een fundamenteel systeem voor R.

Het is duidelijk dat ∇̃κ torsievrij is, maar om in te zien dat deze vlak is
kost meer moeite. Om dit te na te gaan passen we een vlakheidscriterium toe
dat is opgezet door Looijenga, of eerder door Kohno. Dit criterium vereist dat
we eerst H◦×C× compactificeren en vervolgens de residuen van Ω̃κ berekenen
langs de toegevoegde spiegels en randdivisoren. Toepassen van het criterium
op onze situatie levert condities op voor het vlak zijn van ∇̃κ, zodat tenslotte
een W -invariante projectieve structuur op H◦ geconstrueerd kan worden in
termen van ∇̃κ.

Vervolgens laten we zien dat het complement H◦ van de torische schikking
een hyperbolische structuur toelaat wanneer de multipliciteitsparameter κ in
een bepaald gebied ligt. Deze conditie betekent namelijk dat het beeld van
H◦ onder de projectieve evaluatieafbeelding in een complexe bal belandt. Het
idee is dat we eerst de monodromierepresentatie van het systeem met de re-
flectierepresentatie identificeren en dus voor iedere κ een Hermitische vorm h
op het beeld van de evaluatieafbeelding kunnen definiëren. Nu kunnen we het
relevante ‘hyperbolische’ gebied voor κ vinden door de determinant van h te
berekenen. We bewijzen dan dat zijn duale Hermitische vorm h∗ groter dan 0
is (of equivalent, dat h < 0), waarmee het gewenste resultaat volgt.

Laten we dit iets verder uitleggen. We berekenen eerst de eigenwaarden
van de residu-endomorfismen van ∇̃κ langs spiegels en randdivisoren respec-
tievelijk en een verrassend feit is dat elk residu-endomorfisme hoogstens twee
eigenwaarden heeft, of dit nu langs een spiegel of een randdivisor is. Dit vertelt
ons in het bijzonder hoe het lokale gedrag van de evaluatieafbeelding er uit
ziet voor de affiene structuur rond deze divisoren.

Daarna construeren we de reflectierepresentatie van de zogenaamde affiene
Artin-groep Art(M), waar M de affiene Coxeter-matrix geassocieerd aan het
affiene wortelsysteem van R is. Door gebruik te maken van een stelling
van Brieskorn kan de uitgebreide affiene Artin-groep Art′(M) := Art(M) o
(P∨/Q∨) worden gëıdentificeerd met de fundamentele groep van de orbifold
W\H◦. Als gevolg kan overeenkomstig de reflectierepresentatie met de mon-
odromierepresentatie van het systeem gëıdentificeerd worden.
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Verder definiëren we een Hermitische vorm h op de bijbehorende doel-
ruimte vanuit het oogpunt van de reflectierepresentatie, zodat we het hyper-
bolische gebied van het systeem kunnen verkrijgen door de determinant van
h te onderzoeken. In onze situatie kunnen we de evaluatieafbeelding rond de
subreguliere punten uitschrijven in de vorm van lokale coördinaten in termen
van de eigenwaarden van de residu-endomorfismen, waar we deze eigenwaar-
den zien als lokale exponenten. Hier bedoelen we met subreguliere punten de
punten die liggen in precies één spiegel of randdivisor. Na deze voorbereid-
ing kunnen we uiteindelijk bewijzen dat de duale Hermitische vorm h∗ groter
dan 0 is wanneer κ in het hyperbolische gebied ligt, zodat de Γ-overdekking
van W\H◦ de structuur van een complexe bal toelaat. Hier staat Γ voor de
projectieve monodromiegroep.
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